TD - Structures algébriques

Exercice de la banque CCINP n°94. —

- 1. En raisonnant par l'absurde, montrer que le système (S): $\begin{cases} x \equiv 5 & [6] \\ x \equiv 4 & [8] \end{cases}$ n'a pas de solution x appartenant à \mathbf{Z} .
- 2. (a) Énoncer le théorème de Bézout dans Z.
 - (b) Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbf{Z}$. Prouver que

$$(a \mid c \quad et \quad b \mid c) \iff ab \mid c$$

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 5 & [16] \\ x \equiv 4 & [15] \end{cases}$ dans lequel l'inconnue x appartient à \mathbf{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbf{Z} du système (S). On exprimera les solutions en fonction de la solution particulière x_0 .

Exercice 1 $\bigstar \Leftrightarrow \Leftrightarrow -$ Résoudre le système $(S): \left\{ \begin{array}{lll} 6\,x + 7\,y & = & 30 \\ 3\,x - 7\,y & = & 0 \end{array} \right.$ d'inconnue $(x,y) \in (\mathbf{Z}/37\mathbf{Z})^2$.

systemeLineaireZ37Z

Exercice 2 $\star \Leftrightarrow \div$ — Résoudre l'équation $9x \equiv 6 \mod 24$ d'inconnue $x \in \mathbb{Z}$.

equationCongruenceAffineModulo24 [corrigé]

Exercice 3 $\bigstar \Leftrightarrow \Leftrightarrow -$ Résoudre l'équation $n^{13} \equiv n \mod 42$ d'inconnue $x \in \mathbf{Z}$.

equationAlgebriqueDegre13Congruence

Exercice 4 $\bigstar \Leftrightarrow \Leftrightarrow$ — On s'intéresse à l'équation $(E): x^2 + x + 1 = 0$, d'inconnue $x \in \mathbb{Z}/n\mathbb{Z}$, où $n \in \mathbb{N}^*$.

- 1. Résoudre l'équation (E) dans $\mathbb{Z}/7\mathbb{Z}$.
- 2. Résoudre l'équation (E) dans **Z**/91**Z**.
- 3. Résoudre l'équation (E) dans $\mathbb{Z}/220\mathbb{Z}$.
- 4. Soit p un nombre premier impair.
 - (a) Justifier que $\overline{2}$ est inversible dans $\mathbf{Z}/p\mathbf{Z}$.
 - (b) On dit que $x \in \mathbf{Z}/p\mathbf{Z}$ est un carré dans $\mathbf{Z}/p\mathbf{Z}$ s'il existe $y \in \mathbf{Z}/p\mathbf{Z}$ tel que $y^2 = x$. Démontrer que l'équation (E) possède une solution dans $\mathbf{Z}/p\mathbf{Z}$ si et seulement si $\overline{4}^{-1} \overline{1}$ est un carré dans $\mathbf{Z}/p\mathbf{Z}$.

 $\verb"equationQuadratiqueAnneauZnZ"$

Exercice 5 $\bigstar \Leftrightarrow -$ Soit (G, *) un groupe et H un sous-groupe strict de G. Déterminer le sous-groupe engendré par $G \setminus H$.

 $sous {\tt Groupe Engendre Complementaire Sous Groupe Strict} \quad [indication (\tt s)]$

Exercice 6 $\bigstar \Leftrightarrow \Leftrightarrow \longrightarrow$ *Déterminer tous les sous-groupes finis des groupes* (\mathbb{C}^*, \times).

sousGroupesFinisCEtoile [indication(s)]

Exercice 7 ★☆☆ — Soit d un nombre entier qui n'est pas le carré d'un entier. Posons

$$\mathbf{Q}\left[\sqrt{d}\,\right] := \left\{a + b\sqrt{d} \ : \ (a,b) \in \mathbf{Q}^2\right\}$$

- 1. Démontrer que $\mathbf{Q}\left[\sqrt{d}\right]$ est un sous-corps de \mathbf{C} et un sous- \mathbf{Q} -espace vectoriel de dimension 2 de \mathbf{C} .
- 2. Déterminer les morphismes de corps de $\mathbf{Q}\left[\sqrt{d}\right]$ dans $\mathbf{Q}\left[\sqrt{d}\right]$.

 ${\tt endomorphismesCorpsNombresDegre2} \quad [{\tt indication(s)}]$

Exercice 8 $\star \Leftrightarrow \star = Soit A$ un anneau communitatif et I un idéal de A. La radical de I, noté \sqrt{I} , est défini par

$$\sqrt{I} := \{ a \in A : \exists n \in \mathbf{N} \quad a^n \in I \}$$

- 1. Démontrer que \sqrt{I} est un idéal de A.
- 2. Calculer le radical $\sqrt{107\,800\,\mathbf{Z}}$ de l'idéal $107\,800\,\mathbf{Z}$ de l'anneau \mathbf{Z} .
- 3. Calculer le radical $\sqrt{(X^5 + 5X^4 13X^3 + 7X^2)} \mathbf{Q}[X]$ de l'idéal $(X^5 + 5X^4 13X^3 + 7X^2) \mathbf{Q}[X]$ de l'anneau \mathbf{Q} .
- 4. Soit J un autre idéal de A. Démontrer que

$$IJ := \bigcup_{n \in \mathbb{N}} \left\{ \sum_{k=1}^{n} a_k b_k : (a_k)_{k \in \llbracket 1, n \rrbracket} \in I^n \ et \ (b_k)_{k \in \llbracket 1, n \rrbracket} \in I^n \right\}$$

est un idéal de A, puis que

$$\sqrt{IJ} = \sqrt{I \, \cap \, J} = \sqrt{I} \, \cap \, \sqrt{J}$$

radicalIdeal

Exercice 9 $\star\star$ \Leftrightarrow — Soient un entier naturel $n \ge 2$ et d un diviseur positif de n.

- 1. Démontrer que $(\mathbf{Z}/n\mathbf{Z}, +)$ possède un unique sous-groupe de cardinal d.
- $2. \ En \ d\'eduire \ que \ tout \ groupe \ (G,*) \ cyclique \ de \ cardinal \ n \ poss\`ede \ un \ unique \ sous-groupe \ de \ cardinal \ d.$
- 3. Quels sont les idéaux de l'anneau $\mathbb{Z}/n\mathbb{Z}$?

sousGroupesIdeauxZnZ

Exercice 10 $\star\star$ \Leftrightarrow — Les groupes $(\mathbf{R},+)$ et (\mathbf{R}^*,\times) sont-ils isomorphes?

reelsPlusVersusReelsNonNulsFois [indication(s)]

Exercice 11 $\star \star \dot{\approx}$ — Soient (G, *) un groupe fini de cardinal $n, a \in G$ et m un entier relatifs premier à n. Démontrer que l'équation $x^m = a$, d'inconnue $x \in G$, possède une unique solution.

equationPuissanceGroupeFini [corrigé]

Exercice 12 $\star\star$ \Leftrightarrow — Soit α un nombre complexe. On suppose que α est algébrique sur \mathbf{Q} , i.e. qu'il existe $P \in \mathbf{Q}[X] \setminus \{0\}$ tel que $P(\alpha) = 0$.

- 1. Démontrer que $Ann(\alpha) := \{A \in \mathbf{Q}[X] : A(\alpha) = 0\}$ est un idéal de $\mathbf{Q}[X]$.
- 2. Démontrer que $\mathbf{Q}[\alpha] := \mathrm{Vect}_{\mathbf{Q}}\left(\left(\alpha^k\right)_{k \in \mathbf{N}}\right)$ est un \mathbf{Q} -espace vectoriel de dimension finie, qui est un sous-corps de \mathbf{C} .

sousCorpsEngendreNombreAlgebrique [indication(s)]

Exercice 13 $\star \star \Leftrightarrow$ — Introduisons $\mathbf{Z}[i] := \{a + ib : (a, b) \in \mathbf{Z}^2\}$. et l'application norme ν définie par

$$\begin{array}{c|ccc}
\nu & \mathbf{Z}[i] & \longrightarrow & \mathbf{R}_+ \\
z & \longmapsto & |z|^2
\end{array}$$

1. Démontrer que $\mathbf{Z}[i]$ est un sous-anneau de $(\mathbf{C}, +, \times)$.

- 2. Notons $U(\mathbf{Z}[i])$ le groupe des éléments inversibles de l'anneau $\mathbf{Z}[i]$. Démontrer que, pour tout $x \in \mathbf{Z}[i]$, $x \in U(\mathbf{Z}[i])$ si et seulement si $\nu(x) = 1$.
- 3. Déterminer $U(\mathbf{Z}[i])$.
- 4. Un élément x de $\mathbf{Z}[i] \setminus \{0\}$ est dit irréductible s'il vérifie les deux conditions suivantes.
 - (a) Le nombre x n'est pas inversible dans $\mathbf{Z}[i]$.
 - (b) Pour tout $(y, z) \in \mathbf{Z}[i]^2$ tel que x = yz, y ou z est inversible dans $\mathbf{Z}[i]$.

Le nombre 2 est-il irréductible dans $\mathbf{Z}[i]$?

5. Soit $(z, w) \in \mathbf{Z}[i] \times (\mathbf{Z}[i] \setminus \{0\})$. Démontrer qu'il existe $(q, r) \in \mathbf{Z}[i]^2$ tel que

$$z = qw + r$$
 et $\nu(r) < \nu(w)$

Un tel couple est-il nécessairement unique?

6. Démontrer que les idéaux de **Z**[i] sont principaux, i.e. qu'ils sont engendrés par un élément.

anneauEntiersGauss [indication(s)]

Exercice 14 $\star\star$ \Leftrightarrow — Nous définissons la partie $\mathbf{Z}\left[\sqrt{2}\right]$ de \mathbf{R} par $\mathbf{Z}\left[\sqrt{2}\right]:=\left\{a+b\sqrt{2}: (a,b)\in\mathbf{Z}^2\right\}$.

- 1. Soit $x \in \mathbb{Z}[\sqrt{2}]$. Justifier que l'écriture de x sous la forme $a + b\sqrt{2}$, avec $(a,b) \in \mathbb{Z}^2$, est unique.
- 2. Démontrer que $\mathbf{Z}\left[\sqrt{2}\right]$ est un sous-anneau de \mathbf{R} .
- 3. Démontrer qu'il existe un unique automorphisme d'anneaux σ de $\mathbf{Z}[\sqrt{2}]$ qui est non trivial.
- 4. Soit l'application norme, notée N, définie par

$$\begin{array}{c|ccc}
N & \mathbf{Z} \left[\sqrt{2} \right] & \longrightarrow & \mathbf{N} \\
x & \longmapsto & |x \, \sigma(x)|
\end{array}$$

- 5. Démontrer que, pour tout $x \in \mathbf{Z} \left[\sqrt{2} \right]$, $x \in \mathbf{Z} \left[\sqrt{2} \right]^{\times}$ si et seulement si N(x) = 1.
- 6. Soit x un élément non nul de $\mathbf{Z}\left[\sqrt{2}\right]$ et $y \in \mathbf{Z}\left[\sqrt{2}\right]$. Démontrer qu'il existe $(q,r) \in \mathbf{Z}\left[\sqrt{2}\right] \times \mathbf{Z}\left[\sqrt{2}\right]$ tel que

$$y = qx + r$$
 et $N(r) < N(x)$

Le couple (q,r) est-il nécessairement unique?

- 7. Soit I un idéal de $\mathbf{Z}\left[\sqrt{2}\right]$. Démontrer qu'il existe $x \in \mathbf{Z}\left[\sqrt{2}\right]$ tel que $I = a\mathbf{Z}\left[\sqrt{2}\right]$.
- 8. Justifier que $1 + \sqrt{2} \in U(\mathbf{Z} \lceil \sqrt{2} \rceil)$.
- 9. Soit $u \in U(\mathbf{Z}[\sqrt{2}])$ tel que u > 1. Démontrer que $u \geqslant 1 + \sqrt{2}$ puis qu'il existe $n \in \mathbf{N}^*$ tel que $u = (1 + \sqrt{2})^n$.
- 10. Démontrer que le groupe $U\left(\mathbf{Z}\left[\sqrt{2}\right]\right)$ est isomorphe à $\mathbf{Z}\times(\mathbf{Z}/2\mathbf{Z})$. Il s'agit d'un cas particulier du théorème des unités de Dirichlet.
- 11. Déterminer l'ensemble solution de l'équation de Pell-Fermat $(E): a^2-2b^2=1$, d'inconnue $(a,b)\in \mathbb{Z}^2$.
- 12. Donner dix solutions distinctes de l'équation (E).

 ${\tt equationPellFermat}$

Exercice 15 $\star\star$ \Leftrightarrow — Soit p un nombre premier. On note

$$\mathbf{Z}_{(p)} := \left\{ \frac{a}{b} \ : \ (a,b) \in \mathbf{Z} \times \mathbf{N}^* \ , \ p \nmid b \right\} \qquad et \qquad \mathfrak{M} := \left\{ \frac{a}{b} \ : \ (a,b) \in \mathbf{Z} \times \mathbf{N}^* \ , \ p \nmid b \ , \ p \mid a \right\}$$

- 1. Démontrer que $\mathbf{Z}_{(p)}$ est un sous-anneau de $(\mathbf{Q}, +, \times)$.
- 2. Démontrer que $U(\mathbf{Z}_{(p)}) = \mathbf{Z}_{(p)} \setminus \mathfrak{M}$.
- 3. Démontrer que \mathfrak{M} est un idéal de l'anneau $\mathbf{Z}_{(p)}$.
- 4. Soit I un idéal de $\mathbf{Z}_{(p)}$ distinct de $\mathbf{Z}_{(p)}$. Démontrer que $I \subset \mathfrak{M}$.
- 5. Déterminer tous les idéaux de l'anneau $\mathbf{Z}_{(p)}$, en prenant appui sur la description des idéaux de l'anneau \mathbf{Z} .

localisationAnneauZ

Exercice 16 $\star\star$ \Leftrightarrow — Soit K un corps. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'idéaux de K[X].

- 1. On suppose que la suite $(I_n)_{n\in\mathbb{N}}$ est croissante. Démontrer que cette suite est stationnaire.
- 2. Si la suite $(I_n)_{n \in \mathbb{N}}$ est décroissante, est-elle nécessairement stationnaire?

 ${\tt noetherianiteAnneauPolynomesCoefficientsCorps}$

Exercice 17 ★★☆ —

- 1. Le polynôme $X^4 + 4$ est-il irréductible dans $\mathbf{Q}[X]$?
- 2. Quels sont les entiers naturels n tels que $n^4 + 4$ soit un nombre premier?

irreductibilite Polynome Degre 4 Application Arithmetique

Exercice 18 $\star\star\star$ — Soit (G, *) un groupe fini. Pour $a \in G$, posons

$$\Phi_a \quad \left| \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & a*x*a^{-1} \end{array} \right. \quad [conjugaison \ par \ a]$$

- 1. Soit $a \in G$. Démontrer que Φ_a est un automorphisme de groupes de G.
- 2. Démontrer que l'ensemble $I := \{\Phi_a : a \in G\}$ est un sous-groupe du groupe $(\mathfrak{S}(G), \circ)$.
- 3. Supposons que le groupe I est cyclique. Démontrer que G est commutatif.

groupeAutomorphismesInterieursCycliqueGroupeAbelien [indication(s)]

Exercice 19 $\star\star\star$ — Soient un entier $n \ge 2$ et p un nombre premier. Calculer le cardinal de $\operatorname{GL}_n(\mathbf{Z}/p\mathbf{Z})$.

cardinalGLnZpZ

Exercice 20 $\star\star\star$ — Soient p un nombre premier impair. On note

$$C(p) := \left\{ x^2 : x \in \mathbf{F}_p^* \right\}$$
 [ensemble des carrés de \mathbf{F}_p^*]

- 1. Démontrer que $|C(p)| = \frac{p-1}{2}$.
- 2. Soit $x \in \mathbf{F}_p^*$. Démontrer que $x \in C(p)$ si et seulement si $x^{\frac{p-1}{2}} = \overline{1}$

nombreCarresZpZ

Exercice 21 $\star\star\star$ — Soit P un polynôme irréductible dans $\mathbb{Q}[X]$. Démontrer que les racines complexes de P sont toutes de multiplicités 1.

multipliciteRacineComplexePolynomeIrreductibleSurQ

Exercice 22 $\star\star\star\star$ — Soit (G,*) un groupe fini de cardinal $p^{\alpha}\cdot m$, avec p premier, $\alpha\in \mathbb{N}^*$, $m\geqslant 2$ et $p\wedge m=1$. On se propose de démontrer que G possède un sous-groupe de cardinal p^{α} (théorème de Sylow).

 $Si \ g \in G \ et \ A \ est \ une \ partie \ de \ G, \ alors \ on \ pose \ g*A := \{g*a \ : \ a \in A\}.$

Soit E une partie de G de cardinal p^{α} . On pose $G(E) := \{g \in G : g * E = E\}$ et $\mathcal{O}(E) := \{g * E : g \in G\}$.

- 1. Démontrer que G(E) est un sous-groupe de G et que $\operatorname{card}(G(E)) \leq p^{\alpha}$.
- 2. Démontrer que card $(G) = \operatorname{card}(G(E)) \cdot \operatorname{card}(\mathcal{O}(E))$.
- ${\it 3. \ D\'{e}montrer \ que \ les \ trois \ assertions \ suivantes \ sont \ \'{e}quivalentes}.$
 - (a) p ne divise pas $\operatorname{card}(\mathcal{O}(E))$.
 - (b) $\operatorname{card}(G(E)) = p^{\alpha}$
 - (c) $\operatorname{card} (\mathcal{O}(E)) = m$
- 4. On note X l'ensemble des parties de G de cardinal p^{α} . Déterminer le cardinal de X, puis établir que p ne divise pas $\operatorname{card}(X)$.
- 5. Démontrer que G possède un sous-groupe de cardinal p^{α} .

unTheoremeSylow [indication(s)]

sousGroupeEngendreComplementaireSousGroupeStrict [énoncé]

Indication(s) pour l'exercice 5

- Comme H est un sous-groupe strict de G, il existe un élément x appartenant à $G \setminus H$.
- Soit $y \in G$. On vérifie que $y \in G \setminus H$, ce qui livrera $G \subset G \setminus H$, puis $G = G \setminus H$ (l'autre inclusion étant claire).
 - Si $y \in G \setminus H$, alors $y \in \langle G \setminus H \rangle$ est clair.
 - Si $y \in H,$ alors démontrer que $x * y \in G \setminus H.$ Ainsi

$$y = x^{-1} * (x * y) \in \langle G \setminus H \rangle$$

sousGroupesFinisCEtoile [énoncé]

Indication(s) pour l'exercice 6

Raisonner par analyse et synthèse.

- \bullet Analyse.
 - Soit G un sous-groupe fini de (\mathbf{C}^*, \times) , dont nous notons n le cardinal.
- Synthèse.

D'après le cours, \mathbf{U}_n est un sous-groupe de (\mathbf{C}^*, \times) .

endomorphismesCorpsNombresDegre2 [énoncé]

Indication(s) pour l'exercice 7

- 1. $\mathbf{Q}\left[\sqrt{d}\right]$ est un sous- \mathbf{Q} -espace vectoriel de dimension 2 de \mathbf{C} .

 On remarque que $\mathbf{Q}\left[\sqrt{d}\right] = \mathrm{Vect}_{\mathbf{Q}}\left(1,\sqrt{d}\right)$. Donc $\mathbf{Q}\left[\sqrt{d}\right]$ est un sous- \mathbf{Q} -espace vectoriel de \mathbf{C} , dont la famille $\left(1,\sqrt{d}\right)$ est génératrice sur \mathbf{Q} . Justifier que la famille $\left(1,\sqrt{d}\right)$ est libre sur \mathbf{Q} .
 - $\mathbf{Q}\left[\sqrt{d}\right]$ est un sous-anneau de \mathbf{C} . Comme nous savons déjà que $\mathbf{Q}\left[\sqrt{d}\right]$ est un sous-groupe de $(\mathbf{C},+)$, il reste à vérifier que
 - le nombre 1 appartient à $\mathbf{Q}\left[\sqrt{d}\,\right]$
 - $\mathbf{Q}\left[\sqrt{d}\right]$ est stable par produit

pour conclure que $\mathbf{Q}\left\lceil \sqrt{d}\,\right\rceil$ est un sous-anneau de $\mathbf{C}.$

• Tout élément non nul de $\mathbf{Q}\left[\sqrt{d}\right]$ est inversible dans $\mathbf{Q}\left[\sqrt{d}\right]$. Soit $x \in \mathbf{Q}\left[\sqrt{d}\right] \setminus \{0\}$. Il existe donc $(a,b) \in \mathbf{Q}^2$ tel que $x = a + b\sqrt{d}$. Calculer

$$(a+b\sqrt{d})(a-b\sqrt{d})$$

puis justifier que le nombre entier $a^2 - b^2 d$ n'est pas nul, pour conclure que $\left(a + b\sqrt{d}\right)^{-1} \in \mathbf{Q}\left[\sqrt{d}\right]$.

- 2. Raisonner par analyse et synthèse.
 - Analyse.

Soit un morphisme de corps $f \colon \mathbf{Q} \left[\sqrt{d} \right] \longrightarrow \mathbf{Q} \left[\sqrt{d} \right]$.

- Justifier que, pour tout $n \in \mathbb{N}$, f(n) = n.
- En déduire que, pour tout $n \in \mathbf{Z}$, f(n) = n.
- En déduire que, pour tout $(p,q) \in \mathbf{Z} \times \mathbf{N}^*$, $f\left(\frac{p}{q}\right) = \frac{p}{q}$.
- Démontrer que $f\left(\sqrt{d}\right)^2 = d$ et en déduire les deux valeurs possibles pour $f\left(\sqrt{d}\right)$.
- En déduire que f égale l'une des deux applications suivantes

$$\operatorname{id} \left| \begin{array}{ccc} \mathbf{Q} \left[\sqrt{d} \right] & \longrightarrow & \mathbf{Q} \left[\sqrt{d} \right] \\ a + b \sqrt{d} & \longmapsto & a + b \sqrt{d} \end{array} \right| \quad \sigma \left| \begin{array}{ccc} \mathbf{Q} \left[\sqrt{d} \right] & \longrightarrow & \mathbf{Q} \left[\sqrt{d} \right] \\ a + b \sqrt{d} & \longmapsto & a - b \sqrt{d} \end{array} \right|$$

• Synthèse. Il est clair que id est un morphisme de corps. Vérifier que σ est également un morphisme de corps.

reelsPlusVersusReelsNonNulsFois [énoncé]

Indication(s) pour l'exercice 10

Considérer un morphisme de groupes $f\colon (\mathbf{R},+) \longrightarrow (\mathbf{R}^*,\times)$ et un réel x. En remarquant que

$$x = \frac{x}{2} + \frac{x}{2}$$

démontrer que f(x) > 0.

sousCorpsEngendreNombreAlgebrique [énoncé]

Indication(s) pour l'exercice 12

Commençons par deux observations, qui nous aideront dans l'étude du corps $\mathbf{Q}[\alpha]$.

(a) D'après le cours, « le morphisme d'évaluation d'un polynôme de $\mathbf{Q}[X]$ en α »

$$\operatorname{eval}_{\alpha} \left| \begin{array}{ccc} \mathbf{Q}[X] & \longrightarrow & \mathbf{C} \\ P & \longmapsto & P(\alpha) := \sum_{k=0}^{+\infty} [P]_k \, \alpha^k \end{array} \right|$$

est un morphisme de **Q**-algèbres.

(b) L'ensemble $\mathbf{Q}[\alpha]$ possède la description alternative suivante

$$\mathbf{Q}[\alpha] = \{ P(\alpha) : P \in \mathbf{Q}[X] \}$$

Passons à la résolution de l'exercice.

- 1. L'ensemble $\operatorname{Ann}(\alpha)$ est le noyau du morphisme d'anneaux $\operatorname{eval}_{\alpha} \colon \mathbf{Q}[X] \longrightarrow \mathbf{C}$.
- 2. $\mathbf{Q}[\alpha]$ est une sous- \mathbf{Q} -algèbre \mathbf{C} . L'ensemble $\mathbf{Q}[\alpha]$ est l'image de la \mathbf{Q} -algèbre $\mathbf{Q}[X]$ par le morphisme de \mathbf{Q} -algèbres eval $_{\alpha}$: $\mathbf{Q}[X] \longrightarrow \mathbf{C}$.
 - $\mathbf{Q}[\alpha]$ est un \mathbf{Q} -espace vectoriel de dimension finie. Nous savons déjà que $\mathbf{Q}[\alpha]$ est un sous- \mathbf{Q} -espace vectoriel de \mathbf{C} . Il reste à démontrer que ce sous-espace est de dimension finie. Comme $\mathrm{Ann}(\alpha)$ est un idéal non nul de $\mathbf{Q}[X]$, il existe un unique polynôme unitaire μ tel que

$$\operatorname{Ann}(\alpha) = \mu \, \mathbf{Q}[X]$$

Notons $d := deg(\mu) \ge 1$. Démontrer que

$$(1, \alpha, \dots, \alpha^{d-1})$$

est une base de $\mathrm{Ann}(\alpha)$ (le caractère générateur suffit à répondre à la question).

• Tout élément non nul de $\mathbf{Q}[\alpha]$ est inversible dans $\mathbf{Q}[\alpha]$. Soit $x \in \mathbf{Q}[\alpha]$. On considère l'application « multiplication par x » définie sur $\mathbf{Q}[\alpha]$ par

$$\operatorname{mult}_x \mid \begin{array}{ccc} \mathbf{Q}[\alpha] & \longrightarrow & \mathbf{Q}[\alpha] \\ y & \longmapsto & yx \end{array}$$

- Justifier que mult_x est bien définie.
- Démontrer que mult_x est bijective.
- En déduire qu'il existe $y \in \mathbf{Q}[\alpha]$ tel que xy = yx = 1.

anneauEntiersGauss [énoncé]

Indication(s) pour l'exercice 13

- 1. On vérifie que
 - les nombres 0,1 appartiennent à $\mathbf{Z}[i]$
 - $\mathbf{Z}[i]$ est stable par somme tordue
 - $\mathbf{Z}[i]$ est stable par produit
- 2. \implies Soit $x \in U(\mathbf{Z}[i])$. Il existe donc $y \in \mathbf{Z}[i]$ tel que xy = 1. Nous en déduisons

$$1 = \nu(xy) = \nu(x)\,\nu(y)$$

On remarque alors que $\nu(x)$ et $\nu(y)$ sont des entiers naturels.

Soit $x \in \mathbf{Z}[i]$ tel que $\nu(x) = 1$. Il existe $(a,b) \in \mathbf{Z}^2$ tel que x = a + ib. On calcule

$$1 = \nu(x) = (a + ib)(a - ib) = x(a - ib)$$

3. Soit $(a, b) \in \mathbf{Z}^2$.

$$a+i\,b\in U(\mathbf{Z}[i])\iff a^2+b^2=1$$
 [cf. question précédente]
$$\iff (a,b)\in\{(1,0),(-1,0),(0,1),(0,-1)\} \qquad [\text{car a et b sont des entiers}]$$

4. Supposons qu'il existe $x, y \in \mathbf{Z}[i] \setminus U(\mathbf{Z}[i])$ tels que 2 = xy. Nous en déduisons que

$$4 = \nu(xy) = \nu(x)\,\nu(y)$$

Comme $\nu(x)$ et $\nu(y)$ sont des entiers naturels différents de 1, nécessairement $\nu(x)=2$ et $\nu(y)=2$. Nous en déduisons que

$$x = \pm 1 \pm i$$
 et $y = \pm 1 \pm i$

5. • Existence.

On observe qu'il existe $(\alpha, \beta) \in \mathbf{Q}^2$ tel que

$$\frac{z}{w} = \frac{z \cdot \overline{w}}{\left|w\right|^2} = \alpha + i\,\beta$$

On considère deux entiers a, b (non nécessairement uniques) tels que $|\alpha - a| \le \frac{1}{2}$ et $|\beta - b| \le \frac{1}{2}$, puis on vérifie que q := a + i b convient.

• Défaut d'unicité.

Il provient « du choix d'un entier le plus proche d'un nombre rationnel ». Un contre-exemple est donné par

$$\underbrace{1}_{z} = \underbrace{1}_{q} \times \underbrace{2}_{w} + \underbrace{(-1)}_{r} \quad \text{et} \quad \underbrace{1}_{z} = \underbrace{0}_{q} \times \underbrace{2}_{w} + \underbrace{1}_{r}$$

- 6. On adapte les démonstrations données pour les idéaux de \mathbf{Z} et pour les idéaux de $\mathbf{K}[X]$, en prenant appui sur la « pseudo division euclidienne » construite à la question précédente.
 - \bullet Si I est un idéal non nul de $\mathbf{Z}[i]$, un générateur de I est un élément x de I tel que

$$\nu(x) = \min \left\{ \nu(y) : y \in I \setminus \{0\} \right\}$$

groupeAutomorphismesInterieursCycliqueGroupeAbelien [énoncé

Indication(s) pour l'exercice 18

- 1. Vérifier que, pour tout $(x, y) \in G^2$, $\Phi_a(x * y) = \Phi_a(x) * \Phi_a(y)$.
 - Calculer $\Phi_a \circ \Phi_{a^{-1}}$ et $\Phi_{a^{-1}} \circ \Phi_a$.
- 2. Calculer, pour tout $(a,b) \in G^2$, $\Phi_a \circ \Phi_b$.
 - Qu'en déduire pour l'application suivante?

$$\Phi \mid \begin{matrix} (G, *) & \longrightarrow & (\mathfrak{S}(G), \circ) \\ a & \longmapsto & \Phi_a \end{matrix}$$

- L'image d'un morphisme de groupes est un sous-groupe de son but.
- 3. Fixons un élément $g \in G$ tel que Φ_g engendre I.
 - Remarquer que l'application

$$\widetilde{\Phi} \quad \middle| \begin{array}{ccc} (G, \, \ast \,) & \longrightarrow & (I, \circ) \\ a & \longmapsto & \Phi_a \end{array}$$

un morphisme de groupes surjectif et vérifier que son noyau est le centre de G

$$Z(G):=\left\{x\in G\ :\ \forall\,y\in G\quad x\ast y=y\ast x\right\}.$$

- Soit $a \in G$. Comme $I = \langle \Phi_g \rangle$, il existe $k \in \mathbf{Z}$ tel que $\Phi_a = (\Phi_g)^k$. À l'aide du point précédent, justifier qu'il existe $x \in Z(G)$ tel que $a = x * g^k$.
- Soient $(x_1, x_2) \in Z(G)^2$ et $(k_1, k_2) \in \mathbf{Z}^2$. Démontrer que les éléments $x_1 * g^{k_1}$ et $x_2 * g^{k_2}$ commutent.

unTheoremeSylow [énoncé]

Indication(s) pour l'exercice 22

- 1. Vérifier que $e_G \in G(E)$ et que, pour tout $g_1, g_2 \in G(E), g_1 * g_2^{-1} \in G(E)$, en démontrant des égalités d'ensembles par double inclusion.
 - ullet Soit x un élément de E fixé. Justifier que l'application

$$\begin{array}{ccc} G(E) & \longrightarrow & E \\ g & \longmapsto & g * x \end{array}$$

est bien définie et injective.

2. Considérons l'application

$$p \mid G \longrightarrow \mathcal{O}(E)$$

$$g \longmapsto g * E$$

Elle induit une partition de G

$$G = \bigsqcup_{A \in \mathcal{O}(E)} p^{-1}\left(\{A\}\right)$$

Pour chaque $A \in \mathcal{O}(E)$, que l'on peut écrire g * E pour un élément $g \in G$, construire une bijection entre A et E.

3. $(a)\Longrightarrow(b)$ Supposons que p ne divise pas $\operatorname{card}(\mathcal{O}(E))$, i.e. que $v_p(\operatorname{card}(\mathcal{O}(E)))=0$. D'après la question 2

$$\alpha = \underset{p \wedge m=1}{=} v_p \left(\operatorname{card} \left(G \right) \right) = v_p \left(\operatorname{card} \left(G (E) \right) \right) + v_p \left(\operatorname{card} \left(\mathcal{O} \left(E \right) \right) \right) = v_p \left(\operatorname{card} \left(G (E) \right) \right).$$

Ainsi p^{α} divise card (G(E)), d'où $p^{\alpha} \leqslant \operatorname{card}(G(E))$. Or d'après la question 1, $p^{\alpha} \geqslant \operatorname{card}(G(E))$. Ainsi $\operatorname{card}(G(E)) = p^{\alpha}$.

 $(b)\Longrightarrow(c)$ Cette implication est conséquence de la question 2.

(c) \Longrightarrow (a) Cette implication est conséquence de $p \land m = 1$.

4. • Détermination de card(X) et stratégie.

D'après le cours, l'ensemble des parties à p^{α} éléments d'un ensemble à $p^{\alpha}m$ éléments est $\binom{p^{\alpha}m}{p^{\alpha}}$. Ainsi

$$\operatorname{card}\left(X\right) = \begin{pmatrix} p^{\alpha}m\\ p^{\alpha} \end{pmatrix}$$

Pour achever notre réponse à cette question, il nous faut démontrer que p ne divise pas $\binom{p^{\alpha}m}{p^{\alpha}}$, i.e. que

$$\mathcal{P}(\alpha) : v_n((p^{\alpha}m)!) = v_n((p^{\alpha})!) + v_n((p^{\alpha}m - p^{\alpha})!)$$

• $v_p((ap)!) = a + v_p(a!)$, pour tout $a \in \mathbf{N}^*$. Soit $a \in \mathbf{N}^*$. Nous observons

$$v_p((ap)!) = \sum_{i=1}^{ap} v_p(i)$$

Comme

$$[1, ap] = \bigsqcup_{i=0}^{a-1} \{1 + ip, 2 + ip, \dots, p-1 + ip, p + ip\}$$

il vient

$$v_p((ap)!) = \sum_{i=1}^{ap} v_p(i) = \sum_{i=0}^{a-1} \left(\underbrace{v_p(1+ip)}_{=0} + \underbrace{v_p(2+ip)}_{=0} + \dots + \underbrace{v_p(p-1+ip)}_{=0} + \underbrace{v_p(p+ip)}_{=1+v_p(i+1)} \right)$$

puis

$$(\star) \qquad v_p((ap)!) = \sum_{i=0}^{a-1} 1 + \sum_{i=0}^{a-1} v_p(i+1) = a + v_p\left(\prod_{i=0}^{a-1} i\right) = a + v_p(a!)$$

• Initialisation de $\mathcal{P}(\alpha)$ à $\alpha = 0$ L'assertion $\mathcal{P}(0)$ s'écrit

$$v_p(m!) = \underbrace{v_p(1!)}_{=0} + v_p((m-1)!)$$

Comme $p \wedge m = 1$, $v_p(m) = 0$ et donc

$$v_p(m!) = v_p(m \cdot (m-1)!) = v_p(m) + v_p((m-1)!) = v_p((m-1)!)$$

ce qui établit $\mathcal{P}(0)$.

Caractère héréditaire de P(α).
 Soit α ∈ N tel que P(α) est vraie. D'après (⋆)

$$v_p((p^{\alpha+1}m)!) - v_p((p^{\alpha+1})!) - v_p((p^{\alpha+1}m - p^{\alpha+1})!)$$

égale

$$p^{\alpha}m + v_{p}((p^{\alpha}m)!) - (p^{\alpha} + v_{p}((p^{\alpha})!)) - (p^{\alpha}m - p^{\alpha} + v_{p}((p^{\alpha}m - p^{\alpha})!))$$

ou encore, après simplification, égale

$$v_p((p^{\alpha}m)!) - v_p((p^{\alpha})!) - v_p((p^{\alpha}m - p^{\alpha})!)$$
.

Grâce à $\mathcal{P}(\alpha)$, ce dernier terme est nul et donc

$$v_p((p^{\alpha+1}m)!) = v_p((p^{\alpha+1})!) + v_p((p^{\alpha+1}m - p^{\alpha+1})!).$$

5. • On vérifie que la relation \sim définie sur X par

$$\forall (E_1, E_2) \in X^2 \quad E_1 \sim E_2 \iff (\exists g \in G \quad E_1 = g * E_2)$$

est une relation d'équivalence et que, pour tout $E\in X,$ la classe \overline{E} de E est

$$\overline{E} = \mathcal{O}\left(E\right) = \left\{g * E \ : \ g \in G\right\}$$

La partition associée à la relation d'équivalence \sim sur X s'écrit

$$X = \bigsqcup_{i=1}^{r} \mathcal{O}\left(E_{i}\right)$$

où $\mathcal{O}(E_1)$, $\mathcal{O}(E_2)$, ..., $\mathcal{O}(E_r)$ est une liste exhaustive et sans répétition des classes d'équivalences de X pour la relation \sim . Nous en déduisons

$$(\star) \qquad \operatorname{card}(X) = \sum_{k=1}^{r} \operatorname{card}(\mathcal{O}(E_{i}))$$

- D'après la question 4 et l'identité (\star) , il existe $i \in [1, r]$ tel que p ne divise pas card $(\mathcal{O}(E_i))$.
- D'après les questions 1 et 3, $G(E_i)$ est un sous-groupe de (G,*) de cardinal p^{α} .

equationCongruenceAffineModulo24 [énoncé]

Un corrigé de l'exercice 2

• Pour tout $x \in \mathbf{Z}$.

$$9 x \equiv 6 \mod 24 \quad \Longleftrightarrow \quad \overline{9}^{[24]} \ \overline{x}^{[24]} = \overline{6}^{[24]}$$

 $\bullet\,$ Comme $24=3\times 8$ et $3\wedge 8=1,$ le théorème chinois nous apprend que l'application

$$f \mid \mathbf{Z}/24\mathbf{Z} \longrightarrow \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/8\mathbf{Z}$$
$$\overline{x}^{[24]} \longmapsto (\overline{x}^{[3]}, \overline{x}^{[8]})$$

est un isomorphisme d'anneaux. Ainsi, pour tout $x \in \mathbf{Z}$

$$\overline{9}^{[24]} \ \overline{x}^{[24]} = \overline{6}^{[24]} \iff \begin{cases}
\overline{9}^{[3]} \ \overline{x}^{[3]} = \overline{6}^{[3]} \\
\overline{9}^{[8]} \ \overline{x}^{[8]} = \overline{6}^{[8]}
\end{cases}$$

$$\iff \overline{x}^{[8]} = \overline{6}^{[8]}$$

• Des deux points précédents, nous déduisons

$$\{x \in \mathbf{Z} : 9x \equiv 6 \mod 24\} = 6 + 8\mathbf{Z}$$

equationPuissanceGroupeFini [énoncé]

Un corrigé de l'exercice 11

• Il s'agit de démontrer que l'application

$$f \mid \begin{matrix} G & \longrightarrow & G \\ x & \longmapsto & x^m \end{matrix}$$

est bijective (f peut ne pas être un morphisme de groupes, si G est anabélien). Comme G est un ensemble fini, il est équivalent de démontrer que l'application f est injective.

• Soit $(x,y) \in G^2$ tel que f(x) = f(y), i.e. tel que $x^m = y^m$. D'après le théorème de Bézout

$$\exists (u, v) \in \mathbf{Z}^2 \quad mu + nu = 1$$

Alors

$$x^m=y^m \implies x^{mu}=y^{mu}$$
 [élévation à la puissance u]
$$\implies x^{mu+nu}=y^{mu+nu} \qquad [x^n=y^n=e_G \text{ car les ordres de } x \text{ et } y \text{ divisent } n]$$

$$\implies x=y$$