Devoir surveillé n°4 — sujet MPI

vendredi 6 décembre, 14h15-18h15

Les quatre exercices de ce sujet sont indépendants.

Exercice I — Fonction Gamma

1. Déterminer l'ensemble \mathcal{D}_{Γ} des nombres complexes z tels que la fonction

$$f_z \colon t \longmapsto t^{z-1} e^{-t} dt$$

est intégrable sur $]0, +\infty[$.

Soit Γ la fonction définie par

$$\Gamma \mid \mathcal{D}_{\Gamma} \longrightarrow \mathbb{C}$$

$$z \longmapsto \int_{0}^{+\infty} t^{z-1} e^{-t} dt$$

- 2. Soit $z \in \mathcal{D}_{\Gamma}$. Démontrer que $z + 1 \in \mathcal{D}_{\Gamma}$ et que $\Gamma(z + 1) = z \Gamma(z)$.
- 3. Démontrer que, pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.
- 4. Calculer $\Gamma\left(\frac{1}{2}\right)$. On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice II — Règle de Raabe-Duhamel

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs.

- 5. On suppose qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$. Démontrer que $u_n = 0$ (v_n) .
- 6. On suppose qu'il existe $\alpha > 1$ tel que :

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right).$$

Démontrer, à l'aide d'une comparaison avec une série de Riemann, que la série $\sum u_n$ converge.

7. On suppose cette fois qu'il existe $\alpha < 1$ tel que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right).$$

Démontrer que la série $\sum u_n$ diverge.

- 8. Soient a et b des réels strictement positifs. Déterminer la nature de la série $\sum_{n\geq 1}\prod_{k=0}^{n-1}\frac{a+k}{b+k}$.
- 9. On suppose désormais que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right).$$

Démontrer qu'il existe une constante réelle C>0 telle que

$$u_n \underset{n \to +\infty}{\sim} \frac{C}{n}$$

puis conclure quant à la nature de la série $\sum u_n$.

Exercice III — Transformation d'Abel

10. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes. Pour tout $n\in\mathbb{N}$, posons $A_n:=\sum_{k=0}^n a_k$. Démontrer que pour tout $n\in\mathbb{N}^*$:

$$\sum_{k=0}^{n} a_k b_k = \sum_{k=0}^{n-1} A_k (b_k - b_{k+1}) + A_n b_n \qquad \text{[transformation d'Abel]}$$

- 11. Soient $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes et $(b_n)_{n\in\mathbb{N}}$ une suite de réels positifs telles que :
 - (H1) la suite de terme général $A_n := \sum_{k=0}^n a_k$ est bornée;
 - (H2) la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante et converge vers 0. Démontrer que la série $\sum a_n b_n$ converge.
- 12. Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de nombres complexes telle que la série $\sum \frac{a_n}{n}$ diverge. Démontrer que pour tout $\alpha \leqslant 1$, la série $\sum \frac{a_n}{n^{\alpha}}$ diverge.
- 13. Soit $\theta \in \mathbb{R}$ tel que $\theta \neq 0$ [2 π]. Démontrer que la série $\sum \frac{\cos(n\theta)}{n}$ est convergente, mais non-absolument convergente.
- 14. Soient θ et α des nombres réels. Déterminer la nature de la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$.

Exercice IV — Fonction et loi zêta

On note ζ la fonction de la variable réelle x définie par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

On note D_{ζ} son ensemble de définition.

- 15. Déterminer D_{ζ} .
- 16. Étudier le sens de variations de ζ , sans recours au calcul différentiel.
- 17. Justifier que ζ admet une limite finie en $+\infty$.
- 18. Démontrer que pour tout $x \in D_{\zeta}$

$$1 + \frac{1}{(x-1)2^{x-1}} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}.$$

- 19. Déterminer un équivalent de $\zeta(x)$ lorsque x tend vers 1 par valeurs supérieures.
- 20. Déterminer la limite de $\zeta(x)$ lorsque x tend vers $+\infty$.
- 21. Pour tout $n \in \mathbb{N}^*$, on note d_n le nombre de diviseurs positifs de l'entier n. On pose $A = \mathbb{N}^* \times \mathbb{N}^*$ et on prend x > 1. Justifier que la famille $\left(\frac{1}{(ab)^x}\right)_{(a,b)\in A}$ est sommable et que sa somme vaut $\zeta(x)^2$. En déduire que :

$$\zeta^2(x) = \sum_{n=1}^{+\infty} \frac{d_n}{n^x}.$$

David Blottière 2 version du 6 décembre 2024

Soit s>1 un réel fixé. On définit une variable aléatoire X à valeurs dans \mathbb{N}^* sur un espace probabilisé (Ω, \mathcal{A}, P) par :

$$\forall k \in \mathbb{N}^* \quad P(X = k) = \frac{1}{\zeta(s)k^s}$$

On rappelle qu'un entier a divise un entier b s'il existe un entier c tel que b = ac. On note alors a|b.

- 22. Soit $a \in \mathbb{N}^*$. Démontrer que $P(X \in a\mathbb{N}^*) = \frac{1}{a^s}$.
- 23. Soient a_1, a_2, \ldots, a_n dans \mathbb{N}^* des entiers premiers entre eux deux à deux et $N \in \mathbb{N}^*$. Démontrer par récurrence sur n que :

$$(a_1|N, a_2|N, \dots, a_n|N) \iff a_1 \times a_2 \times \dots \times a_n|N$$

Le résultat persiste-t-il si les entiers a_1, a_2, \ldots, a_n sont seulement supposés premiers dans leur ensemble, c'est-à-dire lorsque leur PGCD vaut 1?

24. En déduire que si a_1, a_2, \ldots, a_n sont des entiers de \mathbb{N}^* premiers entre eux deux à deux, alors les événements $[X \in a_1\mathbb{N}^*], \ldots, [X \in a_n\mathbb{N}^*]$ sont mutuellement indépendants. On pourra noter (b_1, \ldots, b_r) une sous-famille de (a_1, \ldots, a_n) .

On note $(p_n)_{n\in\mathbb{N}^*}=(2,3,5,7,11,\ldots)$ la suite croissante des nombres premiers. Pour tout entier $n\in\mathbb{N}^*$, on note B_n l'ensemble des $\omega\in\Omega$ tels que $X(\omega)$ n'est divisible par aucun des nombres premiers p_1,p_2,\ldots,p_n .

25. Soit $n \in \mathbb{N}^*$. Déduire des questions précédentes que :

$$P(B_n) = \prod_{k=1}^n \left(1 - \frac{1}{p_k^s}\right).$$

26. Soit ω dans $\bigcap_{n\in\mathbb{N}^*} B_n$. Que vaut $X(\omega)$? En déduire que :

$$\zeta(s) = \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \frac{1}{p_s^k}}$$

On se propose, en application, de prouver que la série $\sum \frac{1}{p_n}$ des inverses des nombres premiers diverge. On raisonne pour cela par l'absurde en supposant que la série $\sum \frac{1}{p_n}$ converge. On pose pour tout $n \in \mathbb{N}^*$

$$u_n = \prod_{k=1}^{n} \frac{1}{1 - \frac{1}{p_k}}$$

27. Justifier que (u_n) converge vers un réel ℓ et que l'on a pour tout réel s > 1, $\ell \geqslant \zeta(s)$. Conclure.

David Blottière 3 version du 6 décembre 2024