Mines-Ponts 2009. Option MP. Mathématiques II.

Corrigé pour serveur UPS par JL. Lamard (jean-louis.lamard@prepas.org)

Dans toute la suite on notera $E = \mathcal{C}([0,1])$ et \mathcal{F} la famille $(\phi_{\lambda_k})_{k \in \mathbb{N}}$

Question préliminaire.

1) Notons φ_{λ} la restriction de ϕ_{λ} à]0,1[. Alors la famille $\mathcal{F}' = (\varphi_{\lambda_k})_{k \in \mathbb{N}}$ est une famille de $E' = \mathcal{C}^{\infty}(]0,1[)$ et φ_{λ} est vecteur propre associé à λ de l'endomorphisme de $E': f \longmapsto g$ définie par g(x) = xf'(x). La famille \mathcal{F}' est donc libre en tant que famille de vecteurs propres associés à des valeurs propres deux à deux distinctes. Il en résulte (a fortiori) que la famille \mathcal{F} est libre. \square

A. Déterminants de Cauchy.

Notons une erreur d'énoncé évidente : il faut supposer $a_i + b_j \neq 0$ pour $1 \leq i, j \leq n$

- 2) Notons Δ_n le déterminant obtenu comme indiqué dans l'énoncé. En remarquant que $R(a_k) = 0$ pour $1 \le k \le n-1$ il vient que la dernière colonne de Δ_n est nulle sauf le dernier élément en bas qui vaut $R(a_n)$. En développant par rapport à cette colonne on obtient $\Delta_n = R(a_n)D_{n-1}$. Par ailleurs si on suppose que les b_k sont deux à deux distincts donc (puisque la partie entière est nulle) que $R(X) = \sum_{k=1}^{n} \frac{A_k}{X + b_k}$ il vient $R(a_i) = \sum_{k=1}^{n} \frac{A_k}{a_i + b_k}$ de sorte que la dernière colonne de Δ_n vaut $\sum_{k=1}^{n} A_k C_k$ en notant C_k la $k^{\text{ème}}$ colonne de D_n . Le caractère n-linéaire et alterné du déterminant prouve alors que $\Delta_n = A_n D_n$. En conclusion si les b_k sont deux à deux distincts on a ntinue. $A_nD_n=R(a_n)D_{n-1}$
- 3)• Si au moins deux des b_k sont égaux on a $D_n = 0$ car deux colonnes sont égales et la formule proposée est donc
 - Supposons désormais que les b_k sont deux à deux distincts de sorte que la question précédente s'applique.

Notons que la méthode du cache fournit $A_n = \frac{(-)^{n-1} \prod\limits_{k=1}^{n-1} (b_n + a_k)}{(-1)^{n-1} \prod\limits_{k=1}^{n-1} (b_n - b_k)}$ et prouvons la formule par récurrence sur n.

Elle est vraie pour n = 1. Supposons la vraie jusqu'au rang n - 1 avec $n \ge 2$.

La question précédente s'applique et fournit en utilisant l'hypothèse de récurrence et la valeur de A_n (non nulle) :

La question precedente s'applique et fournit en utilisant l'hypothes
$$D_n = \frac{\prod\limits_{k=1}^{n-1}(b_n-b_k)}{\prod\limits_{k=1}^{n-1}(b_n+a_k)} \times \frac{\prod\limits_{k=1}^{n-1}(a_n-a_k)}{\prod\limits_{k=1}^{n}(a_n+b_k)} \times \frac{\prod\limits_{1\leqslant i< j\leqslant n-1}(a_j-a_i)(b_j-b_i)}{\prod\limits_{1\leqslant i,j\leqslant n-1}(a_i+b_j)}$$
 Le numérateur est clairement bien égal à
$$\prod\limits_{1\leqslant i< j\leqslant n}(a_j-a_i)(b_j-b_i)$$

Quant au dénominateur il s'écrit aussi $(a_n+b_n)\prod\limits_{k=1}^{n-1}(a_k+b_n)\prod\limits_{k=1}^{n-1}(a_n+b_k)\prod\limits_{1\leq i}(a_i+b_j)$ donc est bien égal à $\prod_{1 \leqslant i,j \leqslant n} (a_i + b_j)$

Ainsi la formule est bien vraie au rang n donc à tout rang par récurrence.

• Finalement la formule est bien vraie que les b_k soient ou non distincts deux à deux. \square

B. Distance d'un point à une partie dans un espace normé.

- 4) Par définition même de la borne inférieure, d(x,A)=0 si et seulement pour tout $\varepsilon>0$ il existe $a\in A$ tel que $||x-a|| < \varepsilon$ donc si et seulement si x est adhérent à A. \square
- 5) Comme la suite (A_n) est croissante au sens de l'inclusion, la suite $(d(x,A_n))$ est décroissante donc convergente car minorée par 0. Notons ℓ sa limite.

Comme $A_n \subset A$ on a $d(x,A) \leq d(x,A_n)$ pour tout entier n donc par passage à la limite $d(x,A) \leq \ell$.

Par ailleurs soit ε donné quelconque. Il existe $a \in A$ tel que $d(x,A) + \varepsilon > d(x,a)$. Or comme $a \in A$, il existe n_{ε} tel que $a \in A_{n_{\varepsilon}}$ de sorte que $d(x, a) \geqslant d(x, A_{n_{\varepsilon}})$. Ainsi $d(x, A) + \varepsilon > d(x, A_{n_{\varepsilon}}) \geqslant \ell$.

Ainsi pour tout $\varepsilon > 0$ on a $\ell - \varepsilon < d(x, A) \leq \ell$ donc $d(x, A) = \ell$

6) $B \cap V$ est une partie fermée de V (pour la topologie induite) en tant qu'intersection d'une boule fermée de E et de V. Par ailleurs c'est une partie bornée de V espace de dimension finie. Donc V est une partie compacte de V. Comme $B \cap V \subset V$ on a $d(x, V) \leq d(x, B \cap V)$

En outre $B \cap V$ est non vide car contient 0 qui appartient à V (sous-espace) et à $B = \overline{B}(x, ||x||)$

Donc si $y \in V \setminus (B \cap V)$ on a $d(x,y) \ge ||x|| = d(x,0) \ge d(x,B \cap V)$. De même naturellement si $y \in B \cap V$

,	inférieure sur le compact $B \cap V$. \square
\boldsymbol{C}	. Distance d'un point à un sous espace de dimension finie d'un espace euclidien.
8)	On note déjà que la projection orthogonale de x sur V existe bien puisque V est de dimension finie (donc son orthogonal est bien un supplémentaire). En désignant par y cette projection orthogonale et z un élément quelconque de V , le théorème de Pythagore assure que $\ x-z\ ^2 = \ x-y\ ^2 + \ y-z\ ^2$ ce qui établit bien que y est l'unique élément de V en lequel le minimium est atteint. \square
9)	• Si la famille $(x_1, x_2,, x_n)$ est liée l'un des vecteurs (par exemple x_1 quitte à changer la numérotation) est combinaison linéaire des autres d'où il résule que la première colonne du déterminant de Gram est combinaison linéaire des autres. Donc $G(x_1, x_2,, x_n) = 0$. • Si la famille est libre c'est une base \mathcal{B} de $V = \text{vect}(x_1, x_2,, x_n)$ et alors $M(x_1, x_2,, x_n)$ n'est autre que la matrice A de la restriction du produit scalaire à V . Donc det $A \neq 0$. De manière plus précise si \mathcal{B}' désigne une base orthonormée de V et P la matrice de passage de \mathcal{B}' à \mathcal{B} on a $A = {}^tPIP$ (formule de changement de base des applications bilinéaires) donc det $A = (\det P)^2$. • En concluson la famille $(x_1, x_2,, x_n)$ est liée si et seulement si $G(x_1, x_2,, x_n) = 0$. Dans le cas contraire on a $G(x_1, x_2,, x_n) > 0$. \square
10) Notons $x = y + z$ la décomposition de x sur $V \oplus V^{\perp}$ de sorte que $d(x, V) = z $. • Première solution:
	La dernière ligne de $G(x_1, x_2,, x_n, x)$ est donc $((y x_1), (y, x_2),, (y, x_n), y ^2 + z ^2)$
	Or y s'écrit $y = \sum_{i=1}^{n} \lambda_i x_i$ et en effectuant l'opération élémentaire sur la dernière ligne $L_{n+1} \longleftarrow L_{n+1} - \sum_{i=1}^{n} \lambda_i L_i$
	on a le même déterminant avec comme dernière ligne $(0,0,\ldots,0,\ z\ ^2)$ et comme bloc haut-gauche $n\times n$:
	$M(x_1, x_2,, x_n)$ Le dernier élément est bien $ z ^2$ car la dernière colonne de $G(x_1, x_2,, x_n, x)$ (écrite en ligne) est la même que sa dernière ligne et après l'opération élémentaire le dernier élément est :
	$ y ^2 + z ^2 - \sum_{i=1}^n \lambda_i(x_i y) = y ^2 + z ^2 - (\sum_{i=1}^n \lambda_i x_i y) = y ^2 + z ^2 - y ^2.$
	En développant par rapport à la dernière ligne on obtient donc $G(x_1, x_2,, x_n, x) = z ^2 G(x_1, x_2,, x_n)$.
	• Seconde solution On commence par noter que la formule est bien sûr exacte si $x \in V$ car alors $G(x_1, x_2,, x_n, x) = 0$. Sinon notons \mathcal{B} la base orthonormalisée par l'algorithme de Gram-Schmidt de la base $(x_1, x_2,, x_n)$. Alors une base orthonormale de $\text{vect}(x_1, x_2,, x_n, x)$ est $\mathcal{B}' = \mathcal{B} \cup (\frac{z}{\ z\ })$. Notons P' la matrice de passage de \mathcal{B}' à la base
	$(x_1, x_2,, x_n, x)$ et P la matrice de passage de \mathcal{B} à la base $(x_1, x_2,, x_n)$. Alors P' admet comme bloc haut-gauche $n \times n$ la matrice P et comme dernière colonne (écrite en ligne) $(0, 0,, \ z\)$. Donc det $P' = \ z\ $ det P . Or compte-tenu de la démonstration de la question précédente on a $(\det P')^2 = G(x_1, x_2,, x_n, x)$ et $(\det P)^2 = G(x_1, x_2,, x_n)$. \square
D	. Comparaison des normes N_{∞} et N_2 .
11) De la positivité de l'intégration et de l'inégalité $f(t)^2 \leqslant N_\infty(f)^2$ pour tout réel $t \in [0,1]$, on déduit immédiatement que $N_2(f) \leqslant N_\infty(f)$
	Soit $f \in \overline{A}^{\infty}$. Pour tout $\varepsilon > 0$ il existe $g \in A$ telle que $N_{\infty}(f - g) \leqslant \varepsilon$. Alors a fortiori $N_2(f - g) \leqslant \varepsilon$. Donc $f \in \overline{A}^2$.
12) Soit f_n la fonction continue affine par morceaux égale à 1 sur $[\frac{1}{n}, 1]$ et nulle en 0.
	Il vient $N_2(\phi_0-f_n)^2=\int_0^{1/n}n^2t^2\mathrm{d}t=\frac{1}{3n}$ donc la suite (f_n) converge vers ϕ_0 pour la norme N_2 et par caractérisation séquentielle de l'adhérence : $\phi_0\in\overline{V}_0^2$
13) Soit $f \in E$ et (f_n) la suite précédente. Alors la suite (g_n) avec $g_n = f_n f$ est une suite de V_0 et
10	$N_2(f - g_n)^2 = \int_0^1 f(t)^2 \left(f_n(t) - \phi_0(t) \right)^2 dt \leqslant N_\infty(f)^2 \int_0^1 \left(f_n(t) - \phi_0(t) \right)^2 dt = N_\infty(f)^2 N_2(f_n - \phi_0)^2 \xrightarrow[n \to +\infty]{} 0$
	Donc $f \in \overline{V}_0^2$ i.e. V_0 est dense dans E pour la norme N_2 . \square

 \sim Mines-Ponts-2009-maths2-correction. TeX page 2 \sim

7) L'application $x \mapsto d(x, B \cap V)$ est (résultat de cours) 1-lipschitzienne donc continue et partant atteint sa borne

Ainsi pour tout $y \in V$ on a $d(x,y) \geqslant d(x,B \cap V)$ donc $d(x,V) \geqslant d(x,B \cap V)$.

Finalement $d(x, V) = d(x, B \cap V)$

Naturellement V_0 n'est pas dense dans E pour la norme N_∞ car la convergence uniforme entraîne en particulier la convergence simple donc tout élément de \overline{V}_0^{∞} est nul en 0. \square

- 14) Soient V un sous-espace, x et y deux éléments de \overline{V} et (α, β) un élément quelconque de \mathbb{R}^2 . Par caractérisation séquentielle de l'adhérence, il existe deux suites (x_n) et (y_n) d'éléments de V convergeant respectivement vers x et y. Alors (z_n) avec $z_n = \alpha x_n + \beta y_n$ est une suite d'éléments de V qui converge vers $\alpha x + \beta y$ qui de ce fait appartient
- 15) La condition est évidemment nécessaire.

Réciproquement supposons que $\phi_m \in \overline{V}^{\infty}$ pour tout entier m. Soit alors un élément f quelconque de E et $\varepsilon > 0$ quelconque. D'après le théorème de Weierstrass, il existe P, fonction polynomiale, telle que $N_{\infty}(f-P) \leqslant \varepsilon$. D'après la question précédente (comme \overline{V}^{∞} est un sous-espace), la fonction P appartient à \overline{V}^{∞} donc il existe $g \in V$ telle que $N_{\infty}(P-g) \leqslant \varepsilon$. Ainsi $N_{\infty}(f-g) \leqslant 2\varepsilon$ ce qui prouve que $f \in \overline{V}^{\infty}$

16) Là encore la condition est évidemment nécessaire. Elle est également suffisante car en reprenant les notations de la question précédente on a $N_2(f-g) \leq N_{\infty}(f-g) \leq 2\varepsilon$.

E. Un critère de densité de W pour la norme N_2 .

- 17) D'après la question précédente, W est dense dans E si et seulement si $\phi_{\mu} \in \overline{W}^2$ pour tout entier μ . Or la suite (W_n) est une suite croissante au sens de l'inclusion dont la réunion est égale à W. Donc, d'après les questions 4) et 5), $\phi_{\mu} \in \overline{W}^2$ si et seulement si $\lim_{n \to +\infty} d(\phi_{\mu}, W_n) = 0$
- 18) En raisonnant dans l'espace préhilbertien E muni du produit scalaire L^2 , il vient d'après la question 10) :

$$d(\phi_{\mu}, W_n)^2 = \frac{G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n}, \phi_{\mu})}{G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n})}. \text{ Or } (\phi_{\alpha}, \phi_{\beta}) = \int_0^1 \phi_{\alpha}(t)\phi_{\beta}(t) \, \mathrm{d}\, t = \frac{1}{\alpha + \beta + 1}.$$
 Ainsi $G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n})$ est le déterminant de Cauchy associé aux familles (a_k) et (b_k) avec $a_k = \lambda_k$ et $b_k = \lambda_k + 1$

Il en résulte (question 3)) que
$$G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n}) = \frac{\prod\limits_{0 \leqslant i < j \leqslant n} (\lambda_j - \lambda_i)^2}{\prod\limits_{0 \leqslant i, j \leqslant n} (\lambda_i + \lambda_j + 1)}$$
 et

$$G(\phi_{\lambda_0}, \phi_{\lambda_1}, \dots, \phi_{\lambda_n}, \phi_{\mu}) = \frac{\prod\limits_{0 \leqslant i < j \leqslant n} (\lambda_j - \lambda_i)^2 \prod\limits_{i=0}^n (\mu - \lambda_i)^2}{\prod\limits_{0 \leqslant i, j \leqslant n} (\lambda_i + \lambda_j + 1) \times (2\mu + 1) \prod\limits_{i=0}^n (\lambda_i + \mu + 1)^2}.$$

Donc
$$d(\phi_{\mu}, W_n) = \frac{1}{\sqrt{2\mu + 1}} \prod_{i=0}^n \frac{|\mu - \lambda_i|}{\lambda_i + \mu + 1}$$

19) La condition est évidemment suffisante. Montrons qu'elle est nécessaire.

Supposons donc que
$$y_k = \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} \xrightarrow[k \to +\infty]{} 1$$

Si $0 \le x \le \mu$ il vient que $\frac{|x-\mu|}{|x-\mu|} = \frac{\mu-x}{x+\mu+1}$ est compris entre 0 et $\frac{\mu}{\mu+1} = \ell < 1$ (fonction décroissante) Or puisque $y_k \xrightarrow[k \to +\infty]{} 1$ il existe K_0 tel que $k \ge K_0$ implique $\ell < y_k$.

Donc pour
$$k \geqslant K_0$$
 on a $\lambda_k > \mu$ et alors $y_k = \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}$ d'où $\lambda_k = \frac{(\mu + 1)y_k + \mu}{1 - y_k} \xrightarrow[k \to +\infty]{} + \infty$

20) Notons $\Pi_n = \prod_{k=K_0}^n \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}$ pour $n \geqslant K_o$ défini ci-dessus.

D'après les question 17) et 18), W est dense dans E pour la norme N_2 si et seulement si $\lim_{n \to +\infty} \Pi_n = 0$

soit si et seulement si (tous les termes du produit étant strictement positifs) $\lim_{n \to +\infty} \sum_{n=K_0}^{n} \ln \frac{\lambda_k - \mu}{\lambda_k + \mu + 1} = -\infty$ soit

si et seulement la série de terme général (pour $k \geqslant K_0$) $u_k = \ln \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}$ diverge.

• Premier cas: la suite (λ_k) ne tend pas $+\infty$.

Alors la série $\sum \frac{1}{\lambda_k}$ diverge (grossièrement) et (question 19)) u_k ne tend pas vers 0 donc la série $\sum_{k \geq K_0} u_k$ diverge et W est dense dans E.

• Deuxième cas : la suite (λ_k) tend vers \dashv

Alors $u_k = \ln(1 - \frac{\mu}{\lambda_k}) - \ln(1 + \frac{\mu + 1}{\lambda_k}) \sim -\frac{2\mu + 1}{\lambda_k} < 0$ donc (principe de comparaison des séries à termes de signe

fixe) les deux séries $\sum u_k$ et $\sum \frac{1}{\lambda_k}$ sont de même nature.

Ainsi dans ce cas W est dense dans E si et seulement si la série $\sum \frac{1}{\lambda_L}$ diverge.

• Conclusion: W est dense dans E pour la norme N_2 si et seulement si la série $\sum \frac{1}{\lambda_L}$ diverge. \square

F. Un critère de densité de W pour la norme N_{∞} .

- 21) Si W est dense dans E pour la norme N_{∞} il l'est a fortiori pour la norme N_2 moins fine d'après la question 11) donc la série $\sum \frac{1}{\lambda_i}$ diverge. \square
- **22)** Par continuité sur le compact [0,1] de la fonction $\phi_{\mu} \psi$, il existe $x_0 \in [0,1]$ tel que $N_{\infty}(\phi_{\mu} \psi) = |\phi_{\mu}(x_0) \psi(x_0)|$ Or comme $\lambda_k \geqslant 1$ pour tout k et $\mu \geqslant 1$ on a $\phi_{\mu}(0) = \psi(0) = 0$ donc $N_{\infty}(\phi_{\mu} - \psi) = \left| \int_0^{x_0} \left(\phi'_{\mu}(t) - \psi'(t) \right) dt \right|$ Donc par inégalité intégrale de la norme, positivité de l'intégration et inégalité de Scwarz, il vient : $N_{\infty}(\phi_{\mu} - \psi) \leqslant \int_{0}^{x_{0}} \left| \phi'_{\mu}(t) - \psi'(t) \right| dt \left| \leqslant \int_{0}^{1} \left| \phi'_{\mu}(t) - \psi'(t) \right| dt \left| \leqslant N_{2}(\phi_{0}) N_{2}(\phi'_{\mu} - \psi') = N_{2}(\phi'_{\mu} - \psi') \right|$ Ce qui est l'inégalité demandée.
- **23)** Supposons les conditions (i) et (ii) satisfaites ainsi que la divergence de la série $\sum \frac{1}{\lambda_k}$. D'après la question 15), W est dense dans E pour N_{∞} si et seulement si $\phi_m \in \overline{W}^{\infty}$ pour tout entier $m \ge 0$. Comme la condition (i) est satisfaite, il reste à vérifier que $\phi_m \in \overline{W}^{\infty}$ pour tout entier $m \ge 1$. Donnons nous alors un entier $\mu \ge 1$ et un réel $\varepsilon > 0$ quelconque.

On commence par noter que la série (définie à partir d'un certain rang) $\sum \frac{1}{\lambda_k - 1}$ diverge. En effet si λ_k ne tend pas vers $+\infty$ divergence grossière et sinon $\frac{1}{\lambda_k - 1} \sim \frac{1}{\lambda_k} > 0$.

Il en découle que la famille $(\phi_{\lambda_k-1})_{k\geq 1}$ engendre un sous-espace dense dans E pour la norme N_2 . En particulier il existe $\psi = \sum_{k=1}^{n} \alpha_k \phi_{\lambda_k - 1}$ telle que $N_2(\mu \phi_{\mu - 1} - \psi) \leqslant \varepsilon$.

Soit alors $\Psi = \sum_{k=1}^{n} \frac{\alpha_k}{\lambda_k} \phi_{\lambda_k}$.

Comme la condition (ii) est satisfaite, on est dans les conditions d'application de la question précédente qui prouve que $N_{\infty}(\phi_{\mu} - \Psi) \leqslant N_{2}(\mu\phi_{\mu-1} - \psi) \leqslant \varepsilon$. Ce qui prouve que $\phi_{\mu} \in \overline{W}^{\infty}$ et donc le résultat final. \square

24) Posons alors $\alpha = \inf_{k \ge 1} \lambda_k$ et $\mu_k = \frac{\lambda_k}{\alpha}$ (bien licite car $\alpha > 0$)).

D'après la question précédente, le sous-espace W' engendré par la famille (ϕ_{μ_k}) est dense dans E car la suite (μ_k) vérifie (i) et (ii) et en outre la série $\sum \frac{1}{\mu_k}$ diverge.

Soient alors f quelconque de E et $\varepsilon > 0$ donné quelconque. La fonction $g: x \longmapsto f(x^{1/\alpha})$ est élément de E donc il existe $\varphi \in \overline{W'}^{\infty}$ telle que $N_{\infty}(g - \varphi) \leqslant \varepsilon$.

Or
$$\varphi(x) = \sum_{k=0}^{n} a_k x^{\lambda_k/\alpha} = \sum_{k=0}^{n} a_k (x^{1/\alpha})^{\lambda_k} = \Phi(x^{1/\alpha})$$
 avec $\Phi \in W$.

Ainsi $\sup_{x \in [0,1]} \left| \widetilde{f}(x^{1/\alpha}) - \Phi(x^{1/\alpha}) \right| \leqslant \varepsilon$ (1)

Or lorsque x décrit [0,1], il en va de même de $x^{1/\alpha}$. Donc (1) s'écrit $N_{\infty}(f-\Phi) \leqslant \varepsilon$ ce qui prouve que $f \in \overline{W}^{\infty}$.

La condition (ii) peut donc être remplacée par la condition plus faible (ii'). \square

