Devoir maison n°9

pour le lundi 27 janvier

1. Une équation aux dérivées partielles d'ordre 1	1
2. Matrice Jacobienne antisymétrique en tout point	1
3. Groupe d'ordre pq , où p et q sont des premiers distincts	2
4. Corps de rupture d'un polynôme de degré 3 irréductible sur O	2

1. Une équation aux dérivées partielles d'ordre 1

Soit $\Omega :=]0, +\infty[\times]0, +\infty[$.

1. Soient $g \in \mathcal{C}^1([0, +\infty[, \mathbf{R})])$ et f l'application définie par

$$f \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & g(xy) \end{array}$$

Démontrer que $f \in \mathcal{C}^1(\Omega, \mathbf{R})$ et que

$$\forall (x,y) \in \Omega \quad x \frac{\partial f}{\partial x}(x,y) = y \frac{\partial f}{\partial y}(x,y)$$

2. Soit $f \in \mathcal{C}^1(\Omega, \mathbf{R})$ telle que

$$\forall (x,y) \in \Omega \quad x \frac{\partial f}{\partial x}(x,y) = y \frac{\partial f}{\partial y}(x,y)$$

Démontrer qu'il existe $g \in \mathcal{C}^1([0, +\infty[, \mathbf{R})])$ telle que

$$\forall (x, y) \in \Omega \quad f(x, y) = g(xy)$$

On pourra considérer le changement de variable $(u, v) = \left(xy, \frac{x}{y}\right)$.

2. Matrice Jacobienne antisymétrique en tout point

Soient un entier $n \ge 2$, $E := \mathcal{M}_{n,1}(\mathbf{R})$ muni de sa base canonique $\mathcal{B} = (e_1, \dots, e_n)$ et $\mathcal{A}_n(\mathbf{R})$ l'ensemble des matrices antisymétriques de format (n, n) à coefficients réels.

3. Soient $A \in \mathcal{A}_n(\mathbf{R}), B \in E$ et f l'application définie par

$$f \mid \begin{array}{ccc} E & \longrightarrow & E \\ X & \longmapsto & AX + B \end{array}$$

Démontrer que $f \in \mathcal{C}^2(E, E)$ et que, pour tout $X \in E$, $J_X(f) := \operatorname{Mat}_{\mathcal{B}}(\mathrm{d}f(X)) \in \mathcal{A}_n(\mathbf{R})$.

- 4. Soit $g \in \mathcal{C}^2(E, E)$ telle que, pour tout $X \in E$, $J_g(X) := \operatorname{Mat}_{\mathcal{B}}(\operatorname{d}g(X)) \in \mathcal{A}_n(\mathbf{R})$.
 - (a) Démontrer que l'application

$$J_g \mid E \longrightarrow \mathcal{M}_n(\mathbf{R}) \\ X \longmapsto J_g(X)$$

est constante.

(b) En déduire qu'il existe $A \in \mathcal{A}_n(\mathbf{R})$ et $B \in E$ telles que, pour tout $X \in E$, g(X) = AX + B.

3. Groupe d'ordre pq, où p et q sont des premiers distincts

Soient p, q deux nombres premiers distincts et (G, *) un groupe fini de cardinal pq. D'après un théorème (admis) dû à Cauchy

$$(\star)$$
 $\exists (x,y) \in G^2$ ord $(x) = p$ et ord $(y) = q$

- 5. Donner deux premiers distincts p, q et un groupe fini (G, *) de cardinal pq qui est anabélien.
- 6. On suppose dans cette question que (G,*) est abélien. Démontrer que (G,*) est isomorphe $(\mathbf{Z}/pq\mathbf{Z},+)$.
- 7. Démontrer le résultat (\star) dans le cas particulier où p=5 et q=7, i.e. démontrer qu'un groupe fini de cardinal 35 contient un élément d'ordre 5 et un élément d'ordre 7. On pourra raisonner par l'absurde et observer que G est l'union de ses sous-groupes monogènes distincts de $\{e_G\}$.

4. Corps de rupture d'un polynôme de degré 3 irréductible sur Q

- 8. Démontrer que le polynôme $X^3 X 1$ est irréductible sur \mathbb{Q} .
- 9. Démontrer que le polynôme $X^3 X 1$ possède une unique racine réelle a.
- 10. Donner une **Q**-base de $F := \text{Vect}_{\mathbf{Q}} \left(\left\{ a^k : k \in \mathbf{N} \right\} \right)$.
- 11. Démontrer que F est une sous- \mathbf{Q} -algèbre de \mathbf{R} , qui est un corps.
- 12. Étudier les automorphismes de la \mathbf{Q} -algèbre F.