Devoir maison n°5

pour le jeudi 14 novembre

1.	Intégrales de Gauss et de Wallis	1
2.	Intégrale de Dirichlet	1
	Lemme de Riemann-Lebesgue	

 $Pr\'{e}ambule$. — Les élèves de MPI résolvent les questions Q1-Q14, ceux de MPI* toutes les questions. Vous attacherez la plus grande importance à la CLARTÉ, à la PRÉCISION et à la CONCISION de la RÉDACTION. Les résultats non justifiés ne seront pas pris en compte.

1. Intégrales de Gauss et de Wallis

Le but de cet exercice est de calculer la valeur de $I = \int_0^{+\infty} e^{-t^2} dt$.

- **Q1.** Démontrer que l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ converge.
- **Q2.** Démontrer que, pour tout $n \in \mathbb{N}^*$, pour tout $t \in [0, \sqrt{n}[$

$$\left(1 - \frac{t^2}{n}\right)^n \leqslant e^{-t^2} \leqslant \left(1 + \frac{t^2}{n}\right)^{-n}$$

Q3. — En déduire que, pour tout $n \in \mathbf{N}^*$

$$\sqrt{n} W_{2n+1} \leqslant \int_0^{\sqrt{n}} e^{-t^2} dt \leqslant \sqrt{n} W_{2n-2}$$

où, pour tout $p \in \mathbf{N}$, $W_p := \int_0^{\pi/2} \sin^p(t) dt$.

Q4. — Déterminer une récurrence entre W_{n+2} et W_n $(n \in \mathbf{N})$, établir que la suite $((n+1)W_nW_{n+1})_{n \in \mathbf{N}}$ est constante et en déduire que $W_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

 $\mathbf{Q5.}$ — En déduire de l'intégrale I.

2. Intégrale de Dirichlet

Le but de cet exercice est de calculer la valeur de l'intégrale convergente $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Q6. — Justifier que l'intégrale
$$\int_0^{+\infty} \frac{\sin(t)}{t} dt$$
 converge.

Q7. — Justifier que l'intégrale
$$\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$$
 converge et que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$.

Q8. — Justifier que, pour tout
$$n \ge 0$$
, les intégrales $I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$ et $J_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$ sont bien définies.

Q9. — Démontrer que, pour tout
$$n \in \mathbb{N}$$
, $I_n = I_0 = \frac{\pi}{2}$.

Q10. — Soit $\varphi \colon \left[0, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 . Démontrer que

$$\int_0^{\pi/2} \varphi(t) \sin \left(nt\right) \; \mathrm{d}t \xrightarrow[n \to +\infty]{} 0 \qquad \text{[lemme de Riemann-Lebesgue]}$$

Q11. — Démontrer que la fonction $t \mapsto \frac{1}{t} - \frac{1}{\sin(t)}$ se prolonge en une fonction de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$.

Q12. — En déduire que $J_n - I_n \xrightarrow[n \to +\infty]{} 0$.

Q13. — Démontrer, en utilisant un changement de variables, que $J_n \xrightarrow[n \to +\infty]{} I$.

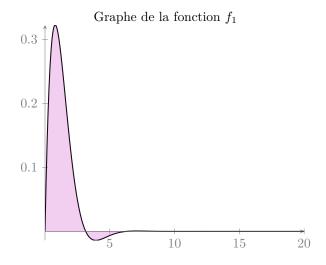
Q14. — En déduire de l'intégrale I.

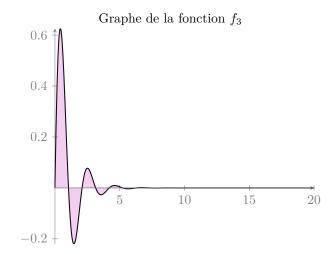
3. Lemme de Riemann-Lebesgue

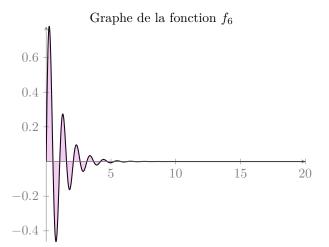
Nous nous proposons de démontrer la variante suivante du résultat établi à la question 10.

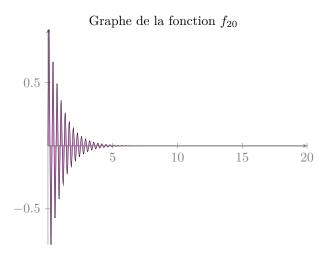
$$\forall\,f\in L^1([0,+\infty[,\mathbf{R})\qquad \int_0^{+\infty}f(t)\sin(nt)\,\,\mathrm{d}t\xrightarrow[n\to+\infty]{}0\qquad [\text{lemme de Riemann-Lebesgue}]$$

Ce résultat peut s'interpréter comme un phénomène asymptotique de compensation d'aires algébriques, que nous illustrons ci-dessous, en considérant quelques fonctions $f_n \colon t \longmapsto e^{-t} \sin(nt)$, où $n \in \mathbf{N}^*$.









Soient a et b des réels tels que a < b.

Q15. — Démontrer que

$$\forall f \in \mathcal{E}([a, b], \mathbf{R}) \quad \int_a^b f(t) \sin(nt) dt \xrightarrow[n \to +\infty]{} 0$$

Q16. — Soit $f \in \mathcal{C}^0([a,b],\mathbf{R})$. Démontrer, à l'aide du théorème de Heine, que

$$\forall \varepsilon > 0 \quad \exists \varphi_{\varepsilon} \in \mathcal{E}([a, b], \mathbf{R}) \qquad ||f - \varphi_{\varepsilon}||_{\infty} \leqslant \varepsilon$$

Q17. — Démontrer alors que

$$\forall f \in \mathcal{C}^0([a,b], \mathbf{R}) \quad \int_a^b f(t) \sin(nt) \, dt \xrightarrow[n \to +\infty]{} 0$$

puis

$$\forall\,f\in\mathcal{CM}\left([a,b],\mathbf{R}\right)\quad\int_a^bf(t)\sin(nt)\,\,\mathrm{d}t\xrightarrow[n\to+\infty]{}0$$

Q18. — Démontrer enfin que

$$\forall f \in L^1([0, +\infty[, \mathbf{R}) \quad \int_0^{+\infty} f(t) \sin(nt) dt \xrightarrow[n \to +\infty]{} 0$$