Probabilités 2

1. Espérance d'une variable aléatoire complexe	2
1.1. Définition de la notion d'espérance pour une variable aléatoire à valeurs dans $[0, +\infty]$	2
1.2. Formule pour l'espérance d'une variable aléatoire à valeurs dans $\mathbf{N} \cup \{+\infty\}$	2
1.3. Espérance d'une variable aléatoire à valeurs complexes	2
1.4. Variable aléatoire centrée	
1.5. Espérance d'une variable aléatoire suivant une loi usuelle	3
1.6. Formule de transfert	3
1.7. Espace L^1 et linéarité de l'espérance	4
1.8. Théorème de domination pour l'espérance	4
1.9. Positivité, croissance et inégalité triangulaire pour l'espérance	4
1.10. Espérance du produit de deux variables indépendantes	4
2. Variance d'une variable aléatoire réelle, écart type et covariance	5
2.1. Espace L^2	5
2.2. Inégalité de Cauchy-Schwarz	5
2.3. Variance et écart type	6
2.4. Variable aléatoire réduite	7
2.5. Formule de König-Huyghens pour l'espérance	7
2.6. Variance d'une variable aléatoire suivant une loi usuelle	7
2.7. Effet d'une transformation affine sur la variance	7
2.8. Covariance de deux variables aléatoires	
2.9. Formule de König-Huyghens pour la covariance	
2.10. Covariance de deux variables indépendantes	
2.11. Variance d'une somme de variables aléatoires	
3. Inégalités probabilistes et loi faible des grands nombres	
3.1. Inégalité de Markov	
3.2. Inégalité de Bienaymé-Tchebychev	
3.3. Loi faible des grands nombres	
4. Fonctions génératrices	
4.1. Définition et propriétés de la série génératrice	
4.2. Définition et propriétés de la fonction génératrice	
4.3. La fonction génératrice détermine la loi	
4.4. Fonctions génératrices et lois usuelles	
4.5. Fonction génératrice et espérance	
4.6. Fonction génératrice d'une somme de variables aléatoires indépendantes	12

Notation. — Dans toute ce chapitre, on fixe un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$.

Convention. — Toutes les variables aléatoires considérées seront définies sur l'espace probabilisable (Ω, \mathcal{A}) et discrètes.

1. Espérance d'une variable aléatoire complexe

1.1. Définition de la notion d'espérance pour une variable aléatoire à valeurs dans $[0,+\infty]$

Définition 1. — Soit X une variable aléatoire à valeurs dans $[0, +\infty]$. On définit l'espérance de X, notée $\mathbf{E}(X)$, par :

$$\mathbf{E}\left(X\right) := \sum_{x \in X(\Omega)} x \; \mathbf{P}\left(X = x\right) \qquad \left[\textit{\'el\'ement de } \left[0, +\infty\right]\right]$$

1.2. Formule pour l'espérance d'une variable aléatoire à valeurs dans $N \cup \{+\infty\}$

Proposition 2. — Soit X une variable aléatoire à valeurs dans $\mathbf{N} \cup \{+\infty\}$. Alors :

$$\mathbf{E}(X) = \sum_{n=1}^{+\infty} \mathbf{P}(X \ge n) \qquad [identit\acute{e} \ dans \ [0, +\infty]]$$

Exemple 3. — L'espérance X d'une variable aléatoire de loi $\mathcal{G}(p)$, où $p \in]0,1[$, est $\mathbf{E}(X) = \frac{1}{p}$.

1.3. Espérance d'une variable aléatoire à valeurs complexes

Définition 4. — Soit X une variable aléatoire à valeurs complexes.

1. On dit que X possède une espérance finie, si la famille $(x \mathbf{P}(X=x))_{x \in X(\Omega)}$ est sommable, i.e. si :

$$\sum_{x \in X(\Omega)} |x| \ \mathbf{P}(X = x) < +\infty \qquad [pr\hat{e}ter \ attention \ aux \ modules]$$

2. Si X possède une espérance finie, alors la somme de la famille sommable $(x \mathbf{P}(X=x))_{x \in X(\Omega)}$ est appelée espérance de X et notée $\mathbf{E}(X)$, i.e. :

$$\mathbf{E}\left(X\right):=\sum_{x\in X\left(\Omega\right)}x\;\mathbf{P}\left(X=x\right)\qquad\left[moyenne\;des\;valeurs\;x\in X(\Omega)\;pond\acute{e}r\acute{e}es\;par\;\mathbf{P}\left(X=x\right)\right]$$

Remarque 5. — Si X est une variable aléatoire à valeurs complexes telle que $X(\Omega)$ est un ensemble fini, alors la famille $(x \mathbf{P}(X=x))_{x \in X(\Omega)}$ est sommable. La variable aléatoire X possède donc une espérance finie.

Exercice 6. — Soit X une variable aléatoire à valeurs complexes, bornée. Démontrer que X possède une espérance finie.

1.4. Variable aléatoire centrée

Définition 7. — Une variable aléatoire X à valeurs complexes est dite centrée si :

- (a) si X possède une espérance finie;
- **(b)** $\mathbf{E}(X) = 0.$

Exemple 8. — Une variable aléatoire X de loi $\mathcal{U}(\{-1,1\})$ est centrée.

1.5. Espérance d'une variable aléatoire suivant une loi usuelle

Exercice 9. — Soit $n \in \mathbb{N}^*$ et $k \in [1, n]$. Démontrer :

$$k \binom{n}{k} = n \binom{n-1}{k-1}$$
 [formule du capitaine]

Théorème 10. — Soit X une variable aléatoire discrète.

- 1. Si X est constante égale à $a \in \mathbb{C}$, alors X possède une espérance finie et $\mathbb{E}(X) = a$.
- **2.** Si $X \sim \mathcal{B}(p)$, où $p \in [0,1[$, alors X possède une espérance finie et $\mathbf{E}(X) = p$.
- **3.** Si $X \sim \mathcal{B}(n,p)$, où $(n,p) \in \mathbf{N}^* \times]0,1[$, alors X possède une espérance finie et $\mathbf{E}(X) = np$.
- **4.** Si $X \sim \mathcal{P}(\lambda)$, où $\lambda > 0$, alors X possède une espérance finie et $\mathbf{E}(X) = \lambda$.
- **5.** Si $X \sim \mathcal{G}(p)$, où $p \in]0,1[$, alors X possède une espérance finie et $\mathbf{E}(X) = \frac{1}{m}$

1.6. Formule de transfert

Théorème 11. — Soient X une variable aléatoire et une application $f: X(\Omega) \longrightarrow \mathbf{C}$.

1. La variable f(X) possède une espérance finie si et seulement si la famille $(f(x) \mathbf{P}(X=x))_{x \in X(\Omega)}$ est sommable, i.e. si et seulement si :

$$\sum_{x \in X(\Omega)} |f(x)| \mathbf{P}(X = x) < +\infty$$

2. Si f(X) possède une espérance finie alors :

$$\mathbf{E}\left(f(X)\right) = \sum_{x \in X(\Omega)} f(x) \; \mathbf{P}\left(X = x\right) \qquad [formule \; de \; transfert]$$

 $D\acute{e}monstration$. • On remarque que :

$$X(\Omega) = \bigsqcup_{y \in f(X(\Omega))} f^{-1}(\{y\})$$

D'après le théorème de sommation par paquets (cas positif) :

$$\sum_{x \in X(\Omega)} |f(x)| \mathbf{P}(X = x) = \sum_{y \in f(X(\Omega))} \sum_{x \in f^{-1}(\{y\})} \underbrace{|f(x)|}_{=|y|} \mathbf{P}(X = x)$$

$$= \sum_{y \in f(X(\Omega))} |y| \sum_{x \in f^{-1}(\{y\})} \mathbf{P}(X = x)$$

$$= \mathbf{P}(X \in f^{-1}(\{y\})) = \mathbf{P}(f(X) = y)$$

$$= \sum_{y \in f(X(\Omega))} |y| \mathbf{P}(f(X) = y)$$

Donc f(X) est d'espérance finie, i.e. $\sum_{y \in f(X(\Omega))} |y| \mathbf{P}(f(X) = y) < +\infty$, si et seulement si $\sum_{x \in X(\Omega)} |f(x)| \mathbf{P}(X = x) < +\infty$. • Si l'on suppose $\sum_{x \in X(\Omega)} |f(x)| \mathbf{P}(X = x) < +\infty$, alors la famille $(|f(x)| \mathbf{P}(X = x))_{x \in X(\Omega)}$ est sommable. On peut

appliquer le théorème de sommation par paquets (cas complexe) et conduire les mêmes calculs qu'avant, sans les modules.

Exercice 12. — Soit X une variable aléatoire de loi $\mathcal{P}(\lambda)$, où $\lambda > 0$. Démontrer que X(X-1) possède une espérance finie et calculer $\mathbf{E}(X(X-1))$.

3 David Blottière VERSION DU 18 MARS 2025

1.7. Espace L^1 et linéarité de l'espérance

Définition 13. — On note L^1 l'ensemble des variables aléatoires à valeurs complexes possédant une espérance finie, i.e.:

$$L^{1}:=\left\{ X\in\mathbf{C}^{\Omega}\ :\ X\ est\ une\ variable\ al\'eatoire\ v\'erifiant\ \sum_{x\in X(\Omega)}|x|\ \mathbf{P}\left(X=x\right)<+\infty\right\}$$

Théorème 14. — L'ensemble L^1 est un sous-**C**-espace vectoriel de $\Omega^{\mathbf{C}}$. et l'application :

$$\mathbf{E} \begin{array}{ccc} L^1 & \longrightarrow & \mathbf{C} \\ X & \longmapsto & \mathbf{E}(X) \end{array}$$

est une forme linéaire.

Exercice 15. — Soit $X \in L^1$.

- 1. Justifier que la variable aléatoire $aX + b \in L^1$ et que $\mathbf{E}(aX + b) = a\mathbf{E}(X) + b$.
- 2. Démonter que $X \mathbf{E}(X) \in L^1$ et que $X \mathbf{E}(X)$ est centrée.

1.8. Théorème de domination pour l'espérance

Théorème 16. — Soient X une variable aléatoire à valeurs dans \mathbb{C} et Y une variable aléatoire à valeurs dans $[0, +\infty]$. Si $|X| \leq Y$ et $Y \in L^1$, alors $X \in L^1$.

1.9. Positivité, croissance et inégalité triangulaire pour l'espérance

Théorème 17. —

1. Positivité. Soit $X \in L^1$ à valeurs réelles.

$$X \geqslant 0 \implies \mathbf{E}(X) \geqslant 0$$

2. Variable aléatoire positive d'espérance nulle. Soit $X \in L^1$ à valeurs réelles telle que $X \geqslant 0$.

$$\mathbf{E}(X) = 0 \iff \underbrace{\mathbf{P}(X = 0) = 1}_{X = 0 \ p.s.}$$

3. Croissance. Soient $X, Y \in L^1$ à valeurs réelles.

$$X \leqslant Y \implies \mathbf{E}(X) \leqslant \mathbf{E}(Y)$$

4. Inégalité triangulaire. Soient $X, Y \in L^1$ à valeurs complexes.

$$|\mathbf{E}(X+Y)| \leqslant \mathbf{E}(|X|) + \mathbf{E}(|Y|)$$

1.10. Espérance du produit de deux variables indépendantes

Théorème 18. — Soit $X, Y \in L^1$. Alors

$$X \perp \!\!\!\perp Y \implies (XY \in L^1 \ et \ \mathbf{E}(XY) = \mathbf{E}(X) \ \mathbf{E}(Y))$$

Corollaire 19. — Soient un entier $n \ge 2$ et $X_1, \ldots, X_n \in L^1$ des variables mutuellement indépendantes. Alors :

$$\prod_{i=1}^{n} X_{i} \in L^{1} \qquad et \qquad \mathbf{E}\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} \mathbf{E}\left(X_{i}\right)$$

2. Variance d'une variable aléatoire réelle, écart type et covariance

Convention. — Dans cette partie, L^1 désigne l'ensemble des variables aléatoires à valeurs réelles possédant une espérance finie. C'est un sous-**R**-espace vectoriel de \mathbf{R}^{Ω} .

2.1. Espace L^2

Définition 20. — On note L^2 l'ensemble des variables aléatoires à valeurs réelles telles que X^2 possède une espérance finie, i.e. :

$$L^{2}:=\left\{ X\in\mathbf{R}^{\Omega}\ :\ X\ est\ une\ variable\ al\'{e}atoire\ v\'{e}rifiant\ \mathbf{E}\left(X^{2}\right)=\sum_{x\in X(\Omega)}x^{2}\ \mathbf{P}\left(X=x\right)<+\infty\right\}$$

Remarque 21. — Soit X une variable aléatoire à valeurs réelles telle que $X(\Omega)$ est fini. La famille $\left(x^2 \mathbf{P}(X=x)\right)_{x \in X(\Omega)}$ est finie et a fortiori sommable. Ainsi $X \in L^2$.

Proposition 22. — Soit X une variable aléatoire à valeurs réelles. Alors :

$$X \in L^2 \implies X \in L^1$$

Éléments de démonstration. Le résultat est conséquence de l'inégalité :

$$|X| \leqslant X^2 + 1$$

et du théorème de domination pour l'espérance.

Exercice 23. — Soient $(n,m) \in \mathbb{N}^2$ tel que $n \leq m$ et X une variable aléatoire à valeurs réelles. Démontrer que :

$$X^m \in L^1 \implies X^n \in L^1$$

Lemme 24. — Soit X, Y deux variables aléatoires à valeurs réelles. Alors :

$$(X \in L^2 \ et \ Y \in L^2) \implies XY \in L^1$$

Éléments de démonstration. Le résultat est conséquence de l'inégalité :

$$|XY| \leqslant \frac{X^2}{2} + \frac{Y^2}{2}$$

et du théorème de domination pour l'espérance.

Proposition 25. — L^2 est un sous-**R**-espace vectoriel de L^1 .

2.2. Inégalité de Cauchy-Schwarz

Lemme 26. — Soit X une variable aléatoire discrète nulle presque sûrement. Alors $X \in L^1$ et $\mathbf{E}(X) = 0$.

Démonstration. Par hypothèse $\mathbf{P}(X=0)=1$, donc $\mathbf{P}(X\neq 0)=0$. Notons $X(\Omega)^*$ l'ensemble $X(\Omega)\setminus\{0\}$.

- Pour tout $x \in X(\Omega)^*$, $(X = x) \subset (X \neq 0)$ donc $\mathbf{P}(X = x) = 0$.
- Nous calculons:

$$\sum_{x \in X(\Omega)} |x| \mathbf{P}(X = x) = \sum_{x \in X(\Omega)^*} |x| \underbrace{\mathbf{P}(X = x)}_{=0} = 0$$

Ainsi $X \in L^1$.

• De plus :

$$\mathbf{E}(X) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x) = \sum_{x \in X(\Omega)^*} x \underbrace{\mathbf{P}(X = x)}_{=0} = 0$$

David Blottière 5 version du 18 mars 2025

Théorème 27. — Soient $X, Y \in L^2$.

1. Inégalité de Cauchy-Schwarz.

$$XY \in L^1$$
 et $\mathbf{E}(XY)^2 \leqslant \mathbf{E}(X^2)$ $\mathbf{E}(Y^2)$

2. Cas d'égalité dans l'inégalité de Cauchy-Schwarz.

$$\mathbf{E}(XY)^{2} = \mathbf{E}(X^{2}) \mathbf{E}(Y^{2}) \iff \begin{cases} \exists \lambda \in \mathbf{R} & X = \lambda Y \text{ presque sûrement} \\ ou \\ \exists \mu \in \mathbf{R} & Y = \mu X \text{ presque sûrement} \end{cases}$$

Démonstration.

- (a) Cas où Y = 0 presque sûrement.
 - (i) Comme $(Y=0) \subset (XY=0)$, on a XY=0 presque sûrement. Ainsi $\mathbf{E}(XY) = \mathbf{E}(Y^2) = 0$ et donc :

$$\mathbf{E}\left(XY\right)^{2} = \mathbf{E}\left(X^{2}\right) \; \mathbf{E}\left(Y^{2}\right)$$

- (ii) On observe que $(Y = 0 \times X) = (Y = 0)$ est presque sûr.
- (a) Cas où $Y \neq 0$ presque sûrement, i.e. $\mathbf{E}(Y^2) \neq 0$.
 - (i) On considère l'application f définie par :

$$f \mid \mathbf{R} \longrightarrow \mathbf{R} \atop t \longmapsto \mathbf{E}\left((X+t\,Y)^2\right) = t^2\,\mathbf{E}\left(Y^2\right) + 2\,t\,\mathbf{E}\left(XY\right) + \mathbf{E}\left(X^2\right)$$

qui est polynomiale, de degré 2 et à valeurs positive ou nulle. Ainsi :

$$\Delta(f) := 4 \mathbf{E} (XY)^2 - 4 \mathbf{E} (X^2) \mathbf{E} (Y^2) \leqslant 0$$

d'où l'inégalité de Cauchy-Schwarz.

(ii) Supposons que $\mathbf{E}(XY)^2 = \mathbf{E}(X^2)$ $\mathbf{E}(Y^2)$. Alors $\Delta(f) = 0$, donc il existe $f \in \mathbf{R}$ tel que :

$$f(\lambda) = \mathbf{E}\left((X + tY)^2\right) = 0$$

Comme $(X + tY)^2 \ge 0$, X + tY = 0 presque sûrement.

- (iii) Supposons qu'il existe $\lambda \in \mathbf{R}$ tel que $X = \lambda Y$ presque sûrement. Alors $(-\lambda Y + X)^2 = 0$ presque sûrement et donc $f(-\lambda) = 0$. On en déduit que f possède une unique racine réelle et donc que $\Delta(f) = 0$. Par suite, $\mathbf{E}(XY)^2 = \mathbf{E}(X^2) \mathbf{E}(Y^2)$.
- (iv) Supposons qu'il existe $\mu \in \mathbf{R}$ tel que $Y = \mu X$ presque sûrement. Comme $Y \neq 0$ presque sûrement, $\mu \neq 0$ et donc $X = \frac{1}{\mu} Y$. Comme en (iii), on en déduit que $\mathbf{E}(XY)^2 = \mathbf{E}(X^2)$ $\mathbf{E}(Y^2)$.

2.3. Variance et écart type

Définition 28. — Soit $X \in L^2$.

1. On définit alors la variance V(X) de X par :

$$\mathbf{V}\left(X\right):=\mathbf{E}\left(\left(X-\mathbf{E}\left(X\right)\right)^{2}\right)\geqslant0\qquad\left[moyenne\ des\ \acute{e}carts\ quadratiques\ \grave{a}\ l'esp\'{e}rance\right]$$

2. L'écart type de X est défini par $\sigma(X) = \sqrt{\mathbf{V}(X)}$.

Remarque 29. — Soit $X \in L^2$. Alors :

$$\mathbf{V}(X) = 0 \iff X = \mathbf{E}(X)$$
 presque sûrement

David Blottière 6 version du 18 mars 2025

2.4. Variable aléatoire réduite

Définition 30. — Une variable aléatoire X à valeurs réelles est dite réduite si:

- (a) $si X \in L^2$;
- **(b)** V(X) = 1.

Exemple 31. — Une variable aléatoire X de loi $\mathcal{P}(1)$ est réduite.

2.5. Formule de König-Huyghens pour l'espérance

Proposition 32. — Soit $X \in L^2$. Alors :

$$\mathbf{V}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2$$

2.6. Variance d'une variable aléatoire suivant une loi usuelle

Remarque 33. — Si $X \in L^2$ alors $X(X-1) \in L^1$ et :

$$\mathbf{V}(X) = \mathbf{E}(X(X-1)) + \mathbf{E}(X) - \mathbf{E}(X)^{2}$$

Exercice 34. — Soit $n \ge 2$ et $k \in [2, n]$. Démontrer :

$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$$
 [formule du capitaine et du vice-capitaine]

Théorème 35. — Soit X une variable aléatoire.

- **1.** Si X est constante égale à $a \in \mathbb{R}$, alors $X \in L^2$ et $\mathbf{V}(X) = 0$.
- **2.** Si $X \sim \mathcal{B}(p)$, où $p \in]0,1[$, alors $X \in L^2$ et $\mathbf{V}(X) = p(1-p)$.
- **3.** Si $X \sim \mathcal{B}(n,p)$, où $(n,p) \in \mathbf{N}^* \times [0,1[$, alors $X \in L^2$ et $\mathbf{V}(X) = n \, p \, (1-p)$.
- **4.** Si $X \sim \mathcal{P}(\lambda)$, où $\lambda > 0$, alors $X \in L^2$ et $\mathbf{V}(X) = \lambda$.
- **5.** Si $X \sim \mathcal{G}(p)$, où $p \in]0,1[$, alors $X \in L^2$ et $\mathbf{V}(X) = \frac{1-p}{p^2}$.

2.7. Effet d'une transformation affine sur la variance

Proposition 36. — Soit $X \in L^2$. Alors:

$$\forall (a,b) \in \mathbf{R}^{2}$$
 $aX + b \in L^{2}$ et $\mathbf{V}(aX + b) = a^{2}\mathbf{V}(X)$

Remarque 37. — Soit $X \in L^2$ telle que $\sigma(X) > 0$. Alors la variable aléatoire $\frac{X - \mathbf{E}(X)}{\sigma(X)}$ est centrée et réduite.

2.8. Covariance de deux variables aléatoires

Définition 38. — Soient $X, Y \in L^2$. Alors :

$$(X - \mathbf{E}(X))(Y - \mathbf{E}(Y)) \in L^1$$

et on définit la covariance de X et Y par :

$$\mathbf{Cov}(X, Y) := \mathbf{E}((X - \mathbf{E}(X))(Y - \mathbf{E}(Y)))$$
 [moyenne des produits des écarts aux moyennes]

Remarque 39. — Si $X \in L^2$, alors :

$$\mathbf{Cov}\left(X\,,\,X\right) = \mathbf{V}\left(X\right)$$

Exercice 40. — Soient $X, Y \in L^2$ telles que $\sigma(X) > 0$ et $\sigma(Y) > 0$. Le coefficient de corrélation linéaire de X et Y est défini par :

$$\rho(X,Y) := \frac{\mathbf{Cov}(X,Y)}{\sigma(X)\,\sigma(Y)}$$

1. Démontrer que :

$$-1 \leqslant \rho(X, Y) \leqslant 1.$$

2. On suppose que $\rho(X,Y)=-1$ ou $\rho(X,Y)=1$. Démontrer qu'il existe $(a,b)\in\mathbf{R}^2$ tel que :

$$X = aY + b$$
 presque sûrement

2.9. Formule de König-Huyghens pour la covariance

Proposition 41. — Soient $X, Y \in L^2$. Alors:

$$\mathbf{Cov}\left(X\,,\,Y\right) = \mathbf{E}\left(XY\right) - \mathbf{E}\left(X\right)\,\mathbf{E}\left(Y\right)$$

2.10. Covariance de deux variables indépendantes

Proposition 42. — Soient $X, Y \in L^2$. Alors:

$$X \perp \!\!\!\perp Y \implies \mathbf{Cov}(X, Y) = 0$$

La réciproque de la proposition précédente est fausse : des variables peuvent être décorrélées, sans pour autant être indépendantes. Cf. exercice suivant.

 $\pmb{Exercice}$ 43. — Soit X une variable aléatoire de loi $\mathcal{U}(\{-1,0,1\})$. On note Y la variable aléatoire définie par :

$$Y := \begin{cases} 1 & \text{si } X = 0 \\ 0 & \text{sinon.} \end{cases}$$

- 1. Reconnaître la loi de Y.
- 2. Calculer la loi du couple (X, Y).
- 3. Justifier que les variables X et Y ne sont pas indépendantes.
- 4. Démontrer que $\mathbf{Cov}(X, Y) = 0$.

2.11. Variance d'une somme de variables aléatoires

Proposition 44. — Soient un entier $n \ge 2$ et $X_1, \ldots, X_n \in L^2$.

1. La variance de la somme $\sum_{i=1}^{n} X_i$ est égale à :

$$\mathbf{V}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \mathbf{V}\left(X_{i}\right) + 2 \sum_{1 \leqslant i < j \leqslant n} \mathbf{Cov}\left(X_{i}, X_{j}\right)$$

2. Si de plus les variables X_1, \ldots, X_n sont deux à deux décorrélées, alors :

$$\mathbf{V}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \mathbf{V}\left(X_{i}\right)$$

3. Inégalités probabilistes et loi faible des grands nombres

3.1. Inégalité de Markov

Proposition 45. — Soient X une variable aléatoire à valeurs réelles telle que $X \ge 0$ et $X \in L^1$. Alors :

$$\forall a \geqslant 0$$
 $a \mathbf{P}(X \geqslant a) \leqslant \mathbf{E}(X)$

Démonstration. Soit $a \in \mathbf{R}^+$. Comme $X \geqslant 0$:

$$X = X \times \mathbf{1}_{(X \geqslant a)} + X \times \mathbf{1}_{(X < a)} \geqslant X \times \mathbf{1}_{(X \geqslant a)} \geqslant a \times \mathbf{1}_{(X \geqslant a)}$$

et, par croissance et linéarité de l'espérance :

$$\mathbf{E}(X) \geqslant a \mathbf{E}(\mathbf{1}_{(X \geqslant a)}) = a \mathbf{P}(X \geqslant a)$$

П

3.2. Inégalité de Bienaymé-Tchebychev

Proposition 46. — Soit $X \in L^2$. Alors:

$$\forall \varepsilon > 0$$
 $\mathbf{P}(|X - \mathbf{E}(X)| \ge \varepsilon) \le \frac{\mathbf{V}(X)}{\varepsilon^2}$

 $D\acute{e}monstration$. Soit $\varepsilon > 0$. Comme:

$$(|X - \mathbf{E}(X)| \ge \varepsilon) = ((X - \mathbf{E}(X))^2 \ge \varepsilon^2)$$

nous avons :

$$\mathbf{P}\left(\left|X - \mathbf{E}\left(X\right)\right| \geqslant \varepsilon\right) = \mathbf{P}\left(\left(X - \mathbf{E}\left(X\right)\right)^{2} \geqslant \varepsilon^{2}\right)$$

Comme $(X - \mathbf{E}(X))^2 \ge 0$ et $(X - \mathbf{E}(X))^2 \in L^1$, nous pouvons appliquer l'inégalité de Markov pour obtenir :

$$\varepsilon^{2} \mathbf{P}\left(\left|X-\mathbf{E}\left(X\right)\right| \geqslant \varepsilon\right) = \varepsilon^{2} \mathbf{P}\left(\left(X-\mathbf{E}\left(X\right)\right)^{2} \geqslant \varepsilon^{2}\right) \leqslant \mathbf{E}\left(\left(X-\mathbf{E}\left(X\right)\right)^{2}\right) = \mathbf{V}\left(X\right)$$

3.3. Loi faible des grands nombres

Théorème 47. — Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires, indépendantes, de même loi et appartenant à L^2 . Notons:

(a) $m := \mathbf{E}(X_1)$;

(b) pour tout
$$n \in \mathbf{N}^*$$
, $S_n = \sum_{k=1}^n X_k$.

$$P\left(\left|\frac{S_n}{n} - m\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0$$

Remarque 48. — La loi faible des grands nombres peut s'interpréter comme suit. Si l'on répète « un très grand nombre de fois » une même expérience aléatoire, de manière indépendante, on s'attend à ce que le résultat moyen de ces expériences soit proche de l'espérance du résultat de chaque expérience. Ainsi, après « un très grand nombre » de lancers d'une pièce équilibrée, on s'attend à avoir presque autant de piles que de faces.

Alors, pour tout $\varepsilon > 0$:

9 DAVID BLOTTIÈRE VERSION DU 18 MARS 2025

4. Fonctions génératrices

Convention. — Dans cette partie, toute les variables considérées seront à valeurs dans N.

4.1. Définition et propriétés de la série génératrice

Définition 49. — Soit X une variable aléatoire à valeurs dans N. On appelle série génératrice de X la série entière

$$\sum_{n\geqslant 0} \mathbf{P}\left(X=n\right) \, z^n$$

Remarque 50. — La série génératrice est entièrement déterminée par la loi de X. Deux variables aléatoires à valeurs dans \mathbf{N} de même loi ont donc même série génératrice.

Proposition 51. — Soit X une variable aléatoire à valeurs dans \mathbf{N} . Le rayon de convergence de la série génératrice de X est supérieur ou égal à 1.

Proposition 52. — Soit X une variable aléatoire à valeurs dans \mathbf{N} . La série génératrice converge normalement sur le disque fermé $\overline{D(0,1)} := \{z \in \mathbf{C} : |z| \leq 1\}$.

4.2. Définition et propriétés de la fonction génératrice

Définition 53. — Soit X une variable aléatoire à valeurs dans \mathbf{N} . La fonction génératrice de X, notée \mathbf{G}_X , est définie par :

$$\mathbf{G}_X : t \longmapsto \mathbf{E}(t^X) = \sum_{n=0}^{+\infty} \mathbf{P}(X=n) \ t^n$$
 [formule de transfert]

Proposition 54. — Soit X une variable aléatoire à valeurs dans N.

- **1.** La fonction G_X est au moins définie sur $\overline{D(0,1)}$ (mais son domaine de définition peut être plus grand).
- **2.** $G_X(1) = 1$
- **3.** La restriction de la fonction G_X à $\overline{D(0,1)}$ est continue sur $\overline{D(0,1)}$.
- **4.** La fonction G_X est de classe C^{∞} sur]-1,1[.

4.3. La fonction génératrice détermine la loi

Théorème 55. — Soit X une variable aléatoire à valeurs dans \mathbb{N} . Alors :

$$\mathbf{P}(X=n) = \frac{\mathbf{G}_X^{(n)}(0)}{n!}$$

Remarque 56. — Soient X et Y deux variables aléatoires à valeurs dans \mathbf{N} . Du théorème précédent, nous déduisons que :

$$\mathbf{G}_X = \mathbf{G}_Y \implies X \sim Y.$$

4.4. Fonctions génératrices et lois usuelles

Proposition 57. — Soient X une variable aléatoire à valeurs dans \mathbf{N} et R le rayon de convergence de sa série génératrice.

- **1.** Si $X \sim \mathcal{B}(p)$, où $p \in]0,1[$, alors $R = +\infty$ et, pour tout $t \in \mathbf{R}$, $\mathbf{G}_X(t) = 1 p + pt$.
- **2.** Si $X \sim \mathcal{B}(n,p)$, où $(n,p) \in \mathbf{N}^* \times]0,1[$, alors $R = +\infty$ et, pour tout $t \in \mathbf{R}$, $\mathbf{G}_X(t) = (1-p+pt)^n$.
- **3.** Si $X \sim \mathcal{P}(\lambda)$, où $\lambda > 0$, alors $R = +\infty$ et, pour tout $t \in \mathbf{R}$, $\mathbf{G}_X(t) = e^{\lambda(t-1)}$.

4. Si
$$X \sim \mathcal{G}(p)$$
, où $p \in]0,1[$, alors $R = \frac{1}{1-p} > 1$ et, pour tout $t \in \left] -\frac{1}{1-p}, \frac{1}{1-p} \right[$, $\mathbf{G}_X(t) = \frac{pt}{1-(1-p)t}$.

4.5. Fonction génératrice et espérance

Théorème 58. — Soit X une variable aléatoire à valeurs dans N.

- 1. La variable aléatoire X est d'espérance finie si et seulement si la fonction G_X est dérivable en 1 à gauche.
- **2.** Si G_X est dérivable en 1 à gauche alors :

$$\mathbf{E}(X) = \mathbf{G}_X'(1)$$

Démonstration.

(a) Soit $t \in [0, 1[$. Nous calculons :

$$\frac{\mathbf{G}_X(1) - \mathbf{G}_X(t)}{1 - t} = \sum_{n=0}^{+\infty} \mathbf{P}(X = n) \quad \frac{1 - t^n}{1 - t} = \sum_{n=1}^{+\infty} \mathbf{P}(X = n) \quad \sum_{k=0}^{n-1} t^k \quad \text{[expression sommatoire du taux d'accroissement]}$$

Pour tout $t \in \mathbf{N}^*$, la fonction :

$$t \longmapsto \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^k$$

est croissante sur [0, 1]. Nous en déduisons que la fonction :

$$\varphi \mid \begin{array}{c} [0,1[\longrightarrow \\ t \longmapsto \begin{array}{c} \mathbf{G}_X(1) - \mathbf{G}_X(t) \\ 1 - t \end{array} = \sum_{n=1}^{+\infty} \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^k \end{array}$$

est elle aussi croissante sur [0,1[.

(b) Supposons que X possède une espérance finie, i.e. que la série $\sum_{n\geqslant 1} n \mathbf{P}(X=n)$ converge. Soit $t\in [0,1[$. Comme :

$$\forall n \in \mathbf{N}^*$$
 $\mathbf{P}(X = n) \sum_{k=0}^{n-1} t^k \leqslant n \mathbf{P}(X = n)$

nous savons que :

$$\varphi(t) = \frac{\mathbf{G}_X(1) - \mathbf{G}_X(t)}{1 - t} = \sum_{n=1}^{+\infty} \mathbf{P}\left(X = n\right) \sum_{k=0}^{n-1} t^k \leqslant \sum_{n=1}^{+\infty} n \, \mathbf{P}\left(X = n\right) = \mathbf{E}\left(X\right) < +\infty$$

La fonction φ est croissante et majorée sur [0,1[. Par le théorème de la limite monotone, elle possède une limite finie en 1^- , i.e. la fonction \mathbf{G}_X est dérivable en 1 à gauche. De plus :

$$\mathbf{G}_{X}'(1) := \lim_{t \to 1^{-}} \varphi(t) \leqslant \mathbf{E}(X)$$

(c) Supposons que G_X est dérivable en 1 à gauche, i.e. que la fonction φ possède une limite finie en 1⁻. Comme la fonction φ est croissante sur [0,1[, le théorème de la limite monotone nous livre :

$$\mathbf{G}_X'(1) := \lim_{t \to 1^-} \varphi(t) = \sup \left\{ \varphi(t) \ : \ t \in [0, 1[\, \right\}.$$

De (a), nous déduisons alors que :

$$\forall t \in [0,1[\qquad \varphi(t) = \sum_{n=1}^{+\infty} \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^k \leqslant \mathbf{G}_X'(1).$$

Fixons un entier $N \in \mathbf{N}^*$. Alors :

$$\forall t \in [0,1[\sum_{n=1}^{N} \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^{k} + \underbrace{\sum_{n=N+1}^{+\infty} \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^{k}}_{\geq 0} \leqslant \mathbf{G}'_{X}(1)$$

et donc:

$$\forall t \in [0,1[$$
 $\sum_{n=1}^{N} \mathbf{P}(X=n) \sum_{k=0}^{n-1} t^{k} \leqslant \mathbf{G}'_{X}(1).$

En faisant tendre t vers 1^- dans la somme (comportant un nombre fini de termes) de gauche, il vient :

$$\sum_{n=1}^{N} n \mathbf{P}(X=n) \leqslant \mathbf{G}_{X}'(1).$$

La suite $\left(\sum_{n=1}^{N} n \mathbf{P}(X=n)\right)_{N \in \mathbf{N}^*}$ est croissante et majorée par $\mathbf{G}_X'(1)$. Par théorème de la limite monotone, la série à termes positifs $\sum_{i=1}^n n \mathbf{P}(X=n)$ est donc convergente, i.e. X possède une espérance finie. De plus :

$$\mathbf{E}(X) = \sum_{n=1}^{+\infty} n \, \mathbf{P}(X=n) = \sup \left\{ \sum_{n=1}^{N} n \, \mathbf{P}(X=n) : N \in \mathbf{N}^* \right\} \leqslant \mathbf{G}_X'(1)$$

(d) Supposons que G_X soit dérivable en 1 à gauche. Alors X possède une espérance finie. Les résultats obtenus en (b) et (c) s'appliquent. Ainsi:

$$\mathbf{G}'_X(1) \underset{\text{(b)}}{\leqslant} \mathbf{E}(X) \underset{\text{(c)}}{\leqslant} \mathbf{G}'_X(1)$$

Remarque 59. — Grâce au théorème 58, on peut retrouver l'espérance et la variance de variables suivant une loi de Bernoulli, une loi binomiale, une loi de Poisson ou une loi géométrique, à partir des fonctions génératrices des lois usuelles

Exercice 60. — Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- 1. On suppose que le rayon de convergence R de sa série génératrice de X est strictement plus grand que 1.
 - (a) Justifier que la fonction G_X est infiniment dérivable au voisinage de 1.
 - (b) Démontrer que $X \in L^2$ et que :

$$\mathbf{V}(X) = \mathbf{G}_X''(1) + \mathbf{G}_X'(1) - (\mathbf{G}_X'(1))^2.$$

- (c) En déduire un autre mode de calcul des variances d'une variable aléatoire de loi binomiale (resp. de Poisson, géométrique).
- 2. On suppose à présent que le rayon de convergence R de sa série génératrice vaut 1.
 - (a) Démontrer que $X \in L^2$ si et seulement si \mathbf{G}_X est deux fois dérivable en 1 à gauche.
 - (b) Démontrer que, si G_X est deux fois dérivable en 1 à gauche, alors :

$$\mathbf{V}(X) = \mathbf{G}_X''(1) + \mathbf{G}_X'(1) - (\mathbf{G}_X'(1))^2$$

4.6. Fonction génératrice d'une somme de variables aléatoires indépendantes

Théorème 61. — Soient X_1, \ldots, X_n des variables aléatoires à valeurs dans \mathbf{N} , indépendantes. Alors :

$$\forall t \in [-1, 1]$$
 $\mathbf{G}_{X_1 + ... + X_n}(t) = \prod_{k=1}^n \mathbf{G}_{X_n}(t)$

Éléments de démonstration.

(a) On démontre le résultat dans le cas où n=2. Soit $t \in [-1,1]$.

$$X_1 \perp \!\!\!\perp X_2 \Longrightarrow t^{X_1} \perp \!\!\!\perp t^{X_2}$$
 [lemme des coalitions]
 $\Longrightarrow \mathbf{E} \left(t^{X_1} t^{X_2} \right) = \mathbf{E} \left(t^{X_1} \right) \mathbf{E} \left(t^{X_2} \right)$ [proposition 18]
 $\Longrightarrow \mathbf{E} \left(t^{X_1 + X_2} \right) = \mathbf{E} \left(t^{X_1} \right) \mathbf{E} \left(t^{X_2} \right)$
 $\Longrightarrow \mathbf{G}_{X_1 + X_2}(t) = \mathbf{G}_{X_1}(t) \mathbf{G}_{X_2}(t).$

(b) On peut proposer une autre démonstration, dans le cas n=2, en étudiant le produit de Cauchy des deux séries entières $\sum_{n\geqslant 0} \mathbf{P}\left(X_1=n\right)\,t^n$ et $\sum_{n\geqslant 0} \mathbf{P}\left(X_2=n\right)\,t^n$.

(c) On raisonne par récurrence sur l'entier $n\geqslant 2$ pour établir le résultat de l'énoncé.

Exercice 62. — Soient $p \in]0,1[\,,X_1,\ldots,X_n]$ des variables de loi $\mathcal{B}(p)$, mutuellement indépendantes et $S:=\sum_{k=1}^n X_k$.

- 1. Calculer la fonction génératrice G_S de la variable S.
- 2. En déduire la loi de S.

Exercice 63. — Soient λ, μ deux réels strictement positifs, X, Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{P}(\lambda), Y \sim \mathcal{P}(\mu)$ et S := X + Y.

- 1. Calculer la fonction génératrice G_S de la variable S.
- 2. En déduire la loi de S.

Exercice 64. — Une urne contient quatre boules numérotées 0, 1, 1, 2. On effectue n tirages avec remise. On suppose les tirages mutuellement indépendants. Déterminer la loi de la variable aléatoire S_n égale à la somme des numéros obtenus.

David Blottière 13 version du 18 mars 2025