Calcul différentiel 1

1.	Rappels sur la continuité	2
	$1.1.\ D\'efinition\ de\ la\ continuit\'e\ d'une\ fonction\ en\ un\ point\$	2
	1.2. Critère séquentiel de continuité en un point	
	1.3. Sélection d'exercices sur la continuité	2
2.	Graphe d'une fonction de deux variables réelles à valeurs réelles	3
3.	Dérivée selon un vecteur et dérivées partielles	4
	3.1. Définition d'une dérivée selon un vecteur ou dérivée directionnelle	4
	3.2. Dérivées partielles	6
	3.3. Fonction de ${f R}^2$ dans ${f R}$ admettant des dérivées partielles continues en tout point de ${f R}^2$	6
4.	Différentielle	7
	4.1. Notation de Landau o (h)	7
	4.2. Définition d'une application différentiable en un point	8
	4.3. Différentiabilité en un point via les applications composantes	8
	4.4. La différentiabilité en a entraı̂ne la continuité en a	9
	4.5. Une application différentiable en a admet des dérivées en a dans toutes les directions	9
	4.6. Différentielle en a d'une application différentiable en a	
	4.7. Application différentiable sur un ouvert et différentielle	10
	4.8. Différentiabilité et différentielle d'une application constante	
	4.9. Différentiabilité et différentielle d'une application linéaire	
5.	Différentiabilité de fonctions d'un ouvert de \mathbb{R}^n dans \mathbb{R}^p	
	5.1. Différentiabilité et différentielle de fonctions d'un ouvert de ${\bf R}$ dans ${\bf R}^p$	
	5.2. Expression de la différentielle d'une fonction différentiable sur ouvert de \mathbb{R}^n via les dérivées partielles	
	5.3. Matrice Jacobienne d'une fonction différentiable sur ouvert de \mathbb{R}^n à valeurs dans \mathbb{R}^p	
	5.4. Différentielle d'une fonction différentiable sur ouvert de \mathbb{R}^n à valeurs dans \mathbb{R} et gradient	
6.	Opérations sur les applications différentiables	
٠.	6.1. Combinaison linéaire de deux applications différentiables	
	6.2. Composée d'applications différentiables par une application multilinéaire	
	6.3. Composée de deux applications différentiables ou règle de la chaîne	
	6.4. Dérivée le long d'un arc	
	6.5. Dérivées partielles d'une composée de deux applications différentiables	
7	Applications de classe \mathcal{C}^1	
٠.	7.1. Définition d'une application de classe \mathcal{C}^1	19
	7.2. Caractérisation des applications de classe \mathcal{C}^1 par les dérivées partielles	19
	7.3. Opérations sur les applications de classe \mathcal{C}^1	
	7.4. Intégration d'une fonction de classe \mathcal{C}^1 le long d'un arc	
	7.5. Caractérisation des fonctions constantes sur un ouvert connexe par arcs	
0	7.6. Étude d'une équation aux dérivées partielles du premier ordre	
8.	Deux méthodes classiques pour étudier la différentiabilité	
	8.1. Calculer un DL1 de f en un point a en développant $f(a+h)$	
	8.2. Appliquer le critère fondamental \mathcal{C}^1 pour une fonction de plusieurs variables	
	8.3. Différentiabilité et différentielle du déterminant : deux approches (HP)	
9.	Applications de classe C^k	
	9.1. Dérivées partielles d'ordre k	
	9.2. Définition d'une applications de classe \mathcal{C}^k	
	9.3. Théorème de Schwarz	
	9.4. Caractère \mathcal{C}^k via les applications composantes	26
	9.5. Opérations sur les fonctions de classe \mathcal{C}^k	26
	9.6. Étude d'une équation aux dérivées partielles du second ordre (équation des cordes vibrantes)	
	(equation and active particles as second order (equation dos outdo historico)	

1. Rappels sur la continuité

1.1. Définition de la continuité d'une fonction en un point

Définition 1. — Soient (E, N_E) un \mathbf{R} -espace vectoriel normé de dimension finie, (F, N_F) un \mathbf{R} -espace vectoriel normé de dimension finie, A une partie de E, $f: A \longrightarrow F$ une application et a un point de A. La fonction f est dite continue au point a si

$$f(x) \xrightarrow[x \to a]{} f(a)$$

 $i.e.\ si$

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \quad \forall x \in A \quad N_E(x - a) < \alpha \implies N_F(f(x) - f(a)) < \varepsilon$$

Remarque 2. — Toutes les normes sur un R-espace vectoriel normé sont équivalentes. Aussi la définition 1 est-elle indépendante de la norme N_E placée sur E et de la norme N_F placée sur F.

1.2. Critère séquentiel de continuité en un point

Définition 3. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, A une partie de $E, f: A \longrightarrow F$ une application et a un point de A. Alors, la fonction f est continue au point a si et seulement si :

$$\forall (a_n)_{n \in \mathbf{N}} \in A^{\mathbf{N}} \quad a_n \xrightarrow[n \to +\infty]{E} a \implies f(a_n) \xrightarrow[n \to +\infty]{F} f(a).$$

1.3. Sélection d'exercices sur la continuité

Exercice 4. — La fonction f définie par

$$f \mid \begin{matrix} \mathbf{R}^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est-elle continue en (0,0)?

Exercice 5. — La fonction f définie par

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est-elle continue en (0,0)?

Exercice 6. — La fonction f définie par

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est-elle continue en (0,0)?

Exercice 7. — Soit la fonction f définie par

$$f \mid \mathbf{R}^{2} \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^{4}}{y(y-x^{2})} & \text{si } y(y-x^{2}) \neq 0 \\ 0 & \text{si } y(y-x^{2}) = 0 \end{cases}$$

1. Démontrer que la restriction de la fonction f à chacune des droites passant par l'origine est continue, i.e. que, pour tout $\theta \in [0, 2\pi[$, l'application

$$g_{\theta} \mid \mathbf{R} \longrightarrow \mathbf{R}$$

 $t \longmapsto f(t\cos(\theta), t\sin(\theta))$

est continue.

2. Démontrer que la fonction f n'est pas continue en (0,0).

Exercice 8. — Démontrer que la fonction

$$f \mid \begin{array}{ccc} \mathbf{R}^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \left\{ \begin{array}{ccc} x^4 & \operatorname{si} x^2 < y \\ y^2 & \operatorname{si} x^2 \geqslant y \end{array} \right. \end{array}$$

est continue sur \mathbb{R}^2 .

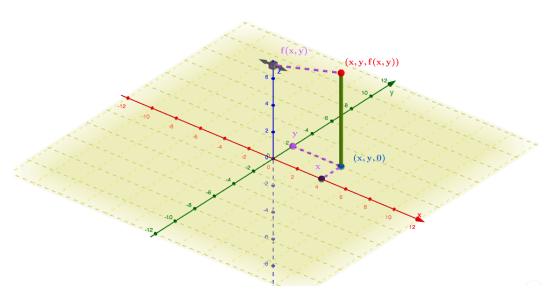
2. Graphe d'une fonction de deux variables réelles à valeurs réelles

Définition 9. — Soit Ω un ouvert de \mathbf{R}^2 et une fonction $f:\Omega \longrightarrow \mathbf{R}$. On appelle graphe de la fonction f la partie Γ de \mathbf{R}^3 définie par

$$\Gamma := \{(x, y, f(x, y)) : (x, y) \in \Omega\}$$

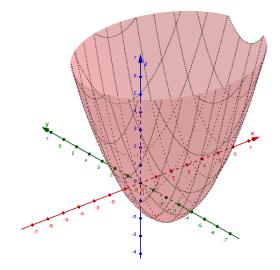
 $i.e. \ \Gamma \ est \ l'ensemble \ des \ points \ de \ l'espace \ de \ composantes \ (x,y,f(x,y)) \ obtenus \ en \ faisant \ varier \ (x,y) \ dans \ \Omega.$

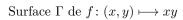
Un point du graphe Γ de f

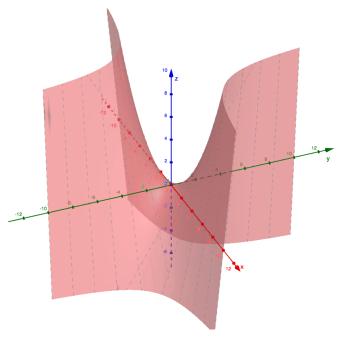


Remarque 10. — Si l'on suppose que la fonction f est continue sur Ω , alors son graphe Γ a l'allure d'une surface (sens intuitif), appelée parfois nappe.

Surface
$$\Gamma$$
 de $f \colon (x,y) \longmapsto \frac{(x-1)^2}{3} + \frac{(y+1)^2}{2} - 2$







Surface Γ de $f:(x,y) \longmapsto \sin(xy)$



3. Dérivée selon un vecteur et dérivées partielles

3.1. Définition d'une dérivée selon un vecteur ou dérivée directionnelle

Notation. — Soient

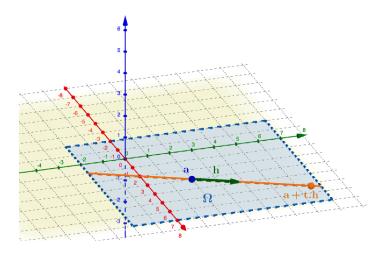
- $\bullet~E,F$ des **R**-espaces vectoriels de dimension finie ;
- Ω une partie ouverte de E;
- $f: \Omega \longrightarrow F$ une application;
- a un point de Ω ;
- ullet h un vecteur non nul de E.

Lemme 11. — La fonction de la variable réelle t

$$\varphi_{a,h}: t \longmapsto f(a+t\cdot h)$$

est définie sur un ouvert de ${\bf R}$ qui contient $0_{\bf R}$.

Illustration du domaine de définition de la fonction $\varphi_{a,h}$.



Définition 12. — On dit que f est dérivable en a suivant le vecteur h si la fonction de la variable réelle

 $\varphi_{a,h} \colon t \longmapsto f(a+t \cdot h)$ [fonction de la variable réelle définie sur un voisinage de $0_{\mathbf{R}}$]

est dérivable en 0, i.e. si le taux d'accroissement

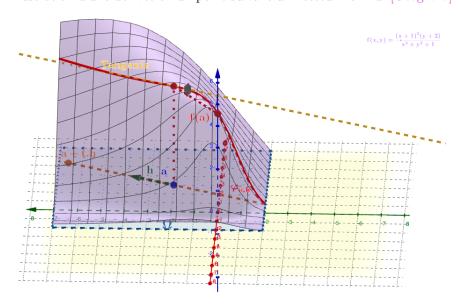
$$\frac{f(a+t\cdot h)-f(a)}{t}$$

possède une limite dans F lorsque t tend vers $0_{\mathbf{R}}$. Si tel est le cas, alors on pose

$$D_h f(a) := \lim_{t \to 0_{\mathbf{R}}} \frac{f(a + t \cdot h) - f(a)}{t} \in F$$

Ce vecteur de F est appelé vecteur dérivé de f en a selon le vecteur h.

Illustration d'une dérivée en un point suivant un vecteur non nul [Geogebra]



Exercice 13. — Soient l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^3 - y^4}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

et $h = (h_1, h_2)$ un vecteur non nul de \mathbb{R}^2 . Démontrer que f admet une dérivée en (0,0) selon le vecteur h et calculer $D_h f(0,0)$.

Exercice 14. — Soit l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^5}{(y-x^2)^2 + x^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Démontrer que f admet une dérivée en (0,0) selon tout vecteur non nul.

Admettre des dérivées en un point a suivant tout vecteur h non nul n'implique pas la continuité au point a, comme l'illustre l'exercice suivant.

Exercice 15. — Soit l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{y^2}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Démontrer que f admet une dérivée selon le vecteur tout vecteur non nul en (0,0) et que la fonction f est discontinue en (0,0).

3.2. Dérivées partielles

Définition 16. — Soient (e_1, \ldots, e_n) la base canonique de \mathbf{R}^n , Ω une partie ouverte de \mathbf{R}^n , $a = (a_1, \ldots, a_n)$ un point de Ω , F un \mathbf{R} -espace vectoriel de dimension finie,

$$f \mid \Omega \longrightarrow F$$
 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application dérivable en a suivant tous les vecteurs e_1, \ldots, e_n . Pour tout $i \in [1, n]$, on définit la i-ème dérivée partielle de f en a, notée $\partial_i f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$, par

$$\frac{\partial f}{\partial x_i}(a) := D_{e_i} f(a) := \lim_{t \to 0_{\mathbf{R}}} \frac{f(a_1, \dots, a_{i-1}, a_i + t, a_{i+1}, \dots, a_n) - f(a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n)}{t} \in F$$

Exercice 17. — L'application f définie par

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (x,y) \longmapsto x^3 + xy + y^2$$

Démontrer que f possède des dérivées partielles en tout point $a = (a_1, a_2) \in \mathbf{R}^2$ et les calculer.

En pratique, lorsque l'on dispose d'une expression de f définie sur un ouvert de \mathbf{R}^n , la i-ème dérivée partielle se calcule en dérivant l'expression par rapport à la i-ème variable, les autres variables étant considérées comme des constantes, pour tout $i \in [\![1,n]\!]$.

3.3. Fonction de R² dans R admettant des dérivées partielles continues en tout point de R²

Proposition 18. — Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction telle que

(H1) la fonction f admet des dérivées partielles suivant la première et la deuxième variable en tout point de \mathbb{R}^2 ;

(H2) les fonctions

$$\frac{\partial f}{\partial x} \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (x,y) \longmapsto \frac{\partial f}{\partial x}(x,y) \qquad et \qquad \frac{\partial f}{\partial y} \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (x,y) \longmapsto \frac{\partial f}{\partial y}(x,y)$$

sont continues sur \mathbb{R}^2

et $(a, b), (h_1, h_2) \in \mathbf{R}^2$. Alors

$$f(a+h_1,b+h_2) - f(a,b) = \underbrace{\int_a^{a+h_1} \frac{\partial f}{\partial x}(u,b+h_2) \, du}_{expression intégrale mettant en jeu les dérivées partielles} \underbrace{\int_b^{b+h_2} \frac{\partial f}{\partial y}(a,v) \, dv}_{expression intégrale mettant en jeu les dérivées partielles}$$

Démonstration. Notons (e_1, e_2) la base canonique de \mathbb{R}^2 . L'identité à établir est conséquence des propriétés (a), (b) et (c) ci-dessous.

(a) Nous observons que

$$f(a+h_1,b+h_2)-f(a,b) = \underbrace{f(a+h_1,b+h_2)-f(a,b+h_2)}_{\text{accroissement suivant 1}^{\text{ère}} \text{ variable}} + \underbrace{f(a,b+h_2)-f(a,b)}_{\text{accroissement suivant 2}^{\text{ème}} \text{ variable}}$$

(b) Considérons la fonction

$$\varphi \mid \mathbf{R} \longrightarrow \mathbf{R} \\ v \longmapsto f(a,v)$$

Soit $v \in \mathbf{R}$. Comme f admet une dérivée partielle par rapport à la deuxième variable en (a, v) (cf. (H1))

$$\frac{\varphi(v+t) - \varphi(v)}{t} = \frac{f(a,v+t) - f(a,v)}{t} \xrightarrow[t \to 0_{\mathbf{R}}]{} D_{e_2} f(a,v) =: \frac{\partial f}{\partial y}(a,v)$$

La fonction φ est donc dérivable sur \mathbf{R} et

$$\forall v \in \mathbf{R} \quad \varphi'(v) = \frac{\partial f}{\partial y}(a, v)$$

D'après (H2), la fonction φ' est continue. D'après le théorème fondamental de l'analyse

$$f(a, b + h_2) - f(a, b) = \varphi(b + h_2) - \varphi(b) = \int_{b}^{b + h_2} \varphi'(v) \, dv = \int_{b}^{b + h_2} \frac{\partial f}{\partial y}(a, v) \, dv$$

(c) De manière analogue à (b), en considérant la fonction

$$\psi \mid \mathbf{R} \longrightarrow \mathbf{R} \\ u \longmapsto f(u, b + h_2)$$

on démontre que

$$f(a + h_1, b + h_2) - f(a, b + h_2) = \int_a^{a+h_1} \frac{\partial f}{\partial x}(u, b + h_2) du$$

4. Différentielle

4.1. Notation de Landau o(h)

Définition 19. — Soient (E, N_E) , (F, N_F) des \mathbf{R} -espaces vectoriels normés de dimension finie, \mathcal{V}^* un voisinage de 0_E privé de 0_E (voisinage épointé) et une application $f: \mathcal{V}^* \longrightarrow F$. On écrit

$$f(h) =_{h \to 0_E} o(h)$$

David Blottière 7 version du 10 janvier 2025

si

$$\frac{f(h)}{N_E(h)} \xrightarrow[h \to 0_E]{F} 0_F$$

ou de manière équivalente si

$$\frac{N_F(f(h))}{N_E(h)} = N_F\left(\frac{f(h)}{N_E(h)}\right) \xrightarrow[h \to 0_E]{\mathbf{R}} 0_{\mathbf{R}}$$

4.2. Définition d'une application différentiable en un point

Définition 20. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application et a un point de Ω . On dit que f est différentiable en a s'il existe une application linéaire (continue) $L \in \mathcal{L}(E, F)$ telle que

$$f(a+h) = f(a) + L(h) + o(h)$$
 [développement limité à l'ordre 1]

i.e. telle que

$$\frac{f(a+h) - f(a) - L(h)}{N_E(h)} \xrightarrow[h \to 0_E]{F} 0_F$$

Remarque 21. — On conserve les notations de définition 20. Comme Ω est un ouvert de E et comme $a \in \Omega$, il existe $r_a > 0$ tel que $B_E(a, r_a) \subset \Omega$. On en déduit que le vecteur f(a + h) de F est bien défini, pour tout $h \in B_E(0_E, r_A)$, donc sur un voisinage de 0_E .

On conserve les notations de définition 20. L'application $L \in \mathcal{L}(E, F)$ peut être vue comme l'application linéaire de E dans F qui approxime au mieux l'application

$$h \longmapsto f(a+h) - f(a)$$

au voisinage de 0_E .

Exercice 22. — Soit $n \geq 2$ un nombre entier. On munit $\mathcal{M}_n(\mathbf{R})$ d'une norme sous-multiplicative, par exemple de la norme $||\cdot||$ définie par

$$\forall M \in \mathcal{M}_n(\mathbf{R}) \quad ||M|| := \max \left\{ \sum_{i=1}^n |[M]_{i,j}| : j \in [1,n] \right\}.$$

Démontrer que l'application

$$f \mid \begin{array}{ccc} \mathcal{M}_n(\mathbf{R}) & \longrightarrow & \mathcal{M}_n(\mathbf{R}) \\ A & \longmapsto & A^2 \end{array}$$

est différentiable en tout point A de $\mathcal{M}_n(\mathbf{R})$.

4.3. Différentiabilité en un point via les applications composantes

Proposition 23. — On note (e_1, \ldots, e_p) la base canonique de \mathbf{R}^p et (e_1^*, \ldots, e_p^*) sa base duale. Soient E un \mathbf{R} -espace vectoriel de dimension finie, Ω une partie ouverte de E,

$$f \mid \Omega \longrightarrow \mathbf{R}^{p}$$

$$x \longmapsto (f_{1}(x), \dots, f_{p}(x)) = \sum_{i=1}^{p} f_{i}(x) \cdot e_{i} \qquad [\forall i \in [1, p], f_{i} = e_{i}^{*} \circ f]$$

une application et a un point de Ω .

1. Si f est différentiable en a, i.e. s'il existe une application linéaire $L \in \mathcal{L}(E, \mathbf{R}^p)$ telle que

$$f(a+h) = f(a) + L(h) + o(h)$$
 [développement limité à l'ordre 1]

alors les applications f_1, \ldots, f_p sont différentiables en a et, pour tout $i \in [1, p]$

$$f_i(a+h) = f_i(a) + e_i^* \circ L(h) + o(h)$$
 [développement limité à l'ordre 1]

2. Si, pour tout $i \in [1, p]$, l'application f_i est différentiable en a, i.e. s'il existe une application linéaire $L_i \in \mathcal{L}(E, \mathbf{R})$ telle que

$$f_i(a+h) = f_i(a) + L_i(h) + o(h)$$
 [développement limité à l'ordre 1]

alors l'application f est différentiable en a et

$$f(a+h) = \int_{h\to 0_E} f(a) + \sum_{i=1}^p L_i(h) \cdot e_i + o(h)$$
 [développement limité à l'ordre 1]

Exercice 24. — Soit la fonction

$$f \left| \begin{array}{ccc} \mathbf{R} \times]0, +\infty[& \longrightarrow & \mathbf{R}^2 \\ (x,y) & \longmapsto & \left(\underbrace{x^2 \ln(y)}_{f_1(x,y)}, \underbrace{e^x y}_{f_2(x,y)}\right) \end{array} \right|$$

et $(a, b) \in \mathbf{R} \times]0, +\infty[$.

1. Démontrer qu'il existe une application linéaire $L_1 \in \mathcal{L}\left(\mathbf{R}^2, \mathbf{R}\right)$ telle que

$$f_1(a + h_1, b + h_2) = f_1(a, b) + L_1(h_1, h_2) + o(||(h_1, h_2)||_1)$$

2. Démontrer qu'il existe une application linéaire $L_2 \in \mathcal{L}(\mathbf{R}^2, \mathbf{R})$ telle que

$$f_2(a + h_1, b + h_2) = f_2(a, b) + L_2(h_1, h_2) + o(||(h_1, h_2)||_1)$$

3. En déduire qu'il existe $L \in \mathcal{L}(\mathbf{R}^2, \mathbf{R}^2)$ telle que

$$f(a + h_1, b + h_2) = f(a, b) + L(h_1, h_2) + o(||(h_1, h_2)||_1)$$

4.4. La différentiabilité en a entraı̂ne la continuité en a

Proposition 25. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application et a un point de Ω . Si l'application f est différentiable en a, alors elle est continue en a.

Une application continue en a n'est pas nécessairement différentiable en a. En effet, l'application

$$f \mid \begin{array}{ccc} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longmapsto & |x| \end{array}$$

est continue en 0, mais n'est pas différentiable en 0. Démontrons le en raisonnant par l'absurde, en supposant que f est différentiable en 0, i.e. en supposant qu'il existe une application linéaire $L \in \mathcal{L}(\mathbf{R}, \mathbf{R})$ telle que

$$|h| = f(h) = f(0) + L(h) + o(h) = L(h) + o(h) = h + o(h) + o(h)$$

Si $h \in \mathbf{R}^*$, on obtient, en divisant chaque membre par h

$$\frac{|h|}{h} = L(1) + o(1)$$

Quand h tend vers 0^+ , il vient L(1) = 1 et, quand h tend vers 0^- , il vient -L(1) = 1. Contradiction.

4.5. Une application différentiable en a admet des dérivées en a dans toutes les directions

Proposition 26. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application, a un point de Ω et h un vecteur non nul de E. Supposons l'application f dif-

férentiable au point a, i.e. qu'il existe une application linéaire $L \in \mathcal{L}(E,F)$ telle que

$$f(a+h) = f(a) + L(h) + o(h)$$

Alors l'application f admet une dérivée en a, suivant la direction h, et

$$D_h f(a) = L(h)$$

Admettre des dérivées directionnelles en a n'entraı̂ne pas la différentiabilité en a, comme l'illustre l'exercice suivant.

Exercice 27. — Soit l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^5}{(y-x^2)^2 + x^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Démontrer que la fonction f admet des dérivées directionnelles en (0,0), dans toutes les directions, mais n'est pas différentiable en (0,0).

4.6. Différentielle en a d'une application différentiable en a

$$f(a+h) = f(a) + L(h) + o(h)$$
 (1)

Alors

- 1. L'application linéaire L vérifiant (1) est unique.
- **2.** L'application linéaire L est appelée différentielle de f en a et est notée df(a).
- 3. La différentielle de f en a est l'unique application linéaire de E dans F telle que

$$f(a+h) = f(a) + df(a) \cdot h + o(h)$$
.

4. Pour tout $h \in E \setminus \{0_E\}$, l'application f est dérivable en a suivant le vecteur h et

$$D_h f(a) = df(a) \cdot h$$

Exemple 29. — Les résultats établis pour la fonction

$$f \mid \begin{array}{ccc} \mathcal{M}_n(\mathbf{R}) & \longrightarrow & \mathcal{M}_n(\mathbf{R}) \\ A & \longmapsto & A^2 \end{array}$$

dans l'exercire 22 s'interprètent comme suit. L'application f est différentiable en tout point $A \in \mathcal{M}_n(\mathbf{R})$ et la différentielle de f en $A \in \mathcal{M}_n(\mathbf{R})$ est donnée par

$$df(A) \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathcal{M}_n(\mathbf{R})$$
 $H \longmapsto AH + HA$

4.7. Application différentiable sur un ouvert et différentielle

Définition 30. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application. On dit que f est différentiable sur Ω si et seulement si f est différentiable en tout point a de Ω . Si tel est le cas, la différentielle de f est l'application

$$df \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathcal{L}(E, F) \\ a & \longmapsto & df(a) \end{array}$$

4.8. Différentiabilité et différentielle d'une application constante

Proposition 31. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application constante. Alors f est différentiable sur Ω et

$$df \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathcal{L}(E,F) \\ a & \longmapsto & 0_{\mathcal{L}(E,F)} \end{array}$$

4.9. Différentiabilité et différentielle d'une application linéaire

Proposition 32. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, et $f: E \longrightarrow F$ une application linéaire. Alors f est différentiable sur E et

$$\mathrm{d}f \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathcal{L}(E,F) \\ a & \longmapsto & f \end{array}$$

Exercice 33. — Soient E, F, G des **R**-espaces vectoriels de dimension finie, et $B: E \times F \longrightarrow G$ une application bilinéaire. Démontrer que B est différentiable sur $E \times F$ et calculer sa différentielle dB.

5. Différentiabilité de fonctions d'un ouvert de \mathbb{R}^n dans \mathbb{R}^p

5.1. Différentiabilité et différentielle de fonctions d'un ouvert de R dans \mathbb{R}^p

Lemme 34. — Soit E un R-espace vectoriel. Les applications

$$u \mid \mathcal{L}(\mathbf{R}, E) \longrightarrow E \\ f \longmapsto f(1) \qquad et \qquad v \mid E \longrightarrow v(h) \mid \mathbf{R} \longrightarrow E \\ t \longmapsto t \cdot h$$

 $sont\ des\ isomorphismes\ de\ \mathbf{R}\text{-}espaces\ vectoriels,\ r\'eciproques\ l'un\ de\ l'autre.$

Proposition 35. — Soient $p \in \mathbf{N}^*$ un nombre entier, Ω une partie ouverte de \mathbf{R} , $f : \Omega \longrightarrow \mathbf{R}^p$ une fonction et a un point de Ω .

- 1. La fonction f est différentiable en a si et seulement si la fonction f est dérivable en a.
- 2. Si la fonction f est différentiable/dérivable en a, alors

$$\forall h \in \mathbf{R} \quad \mathrm{d}f(a) \cdot h = h f'(a) \in \mathbf{R}^p$$

$$et f'(a) = df(a) \cdot 1.$$

Exemple 36. — On considère la fonction inverse

$$f \mid \mathbf{R}^* \longrightarrow \mathbf{R}$$
$$x \longmapsto \frac{1}{x}$$

et un point a de \mathbf{R}^* . La fonction f est dérivable en a et $f'(a) = -\frac{1}{a^2}$. D'après la proposition 35, l'application f est différentiable en a et sa différentiable en a et sa différentiable en a est donnée par

$$df(a) \mid \mathbf{R} \longrightarrow \mathbf{R} \\ h \longmapsto -\frac{h}{a^2}$$

5.2. Expression de la différentielle d'une fonction différentiable sur ouvert de \mathbb{R}^n via les dérivées partielles

Proposition 37. — Soient (e_1, \ldots, e_n) la base canonique de \mathbf{R}^n , (e_1^*, \ldots, e_n^*) sa base duale, Ω une partie ouverte de \mathbf{R}^n , $a = (a_1, \ldots, a_n)$ un point de Ω , F un \mathbf{R} -espace vectoriel de dimension finie,

$$f \mid \Omega \longrightarrow F$$
 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application différentiable en a. Alors

1. les dérivées partielles

$$\frac{\partial f}{\partial x_1}(a) := D_{e_1} f(a)$$
 , ... , $\frac{\partial f}{\partial x_n}(a) := D_{e_n} f(a)$

existent toutes;

2. pour tout $h \in \mathbf{R}^n$

$$df(a) \cdot h = \sum_{i=1}^{n} e_i^*(h) \frac{\partial f}{\partial x_i}(a)$$

La connaîssance des dérivées partielles de f en a suffit donc à connaître la différentielle de f en a.

Démonstration.

1. Comme l'application f est différentiable en a, pour tout $h \in E \setminus \{0_E\}$, l'application f admet des dérivées directionnelles au point a suivant le vecteur h et

$$D_h f(a) = d f(a) \cdot h$$

En spécialisant h aux vecteurs e_1, \ldots, e_n , nous en déduisons que les dérivées directionnelles, appelées aussi dérivées partielles, suivantes

$$\frac{\partial f}{\partial x_1}(a) := D_{e_1} f(a)$$
 , ... , $\frac{\partial f}{\partial x_n}(a) := D_{e_n} f(a)$

existent toutes et

$$\frac{\partial f}{\partial x_1}(a) = d f(a) \cdot e_1 \quad , \quad \dots \quad , \quad \frac{\partial f}{\partial x_n}(a) = d f(a) \cdot e_n$$

2. Soit h un vecteur de E, qui se décompose en $h = \sum_{i=1}^{n} e_i^*(h) e_i$ dans la base (e_1, \dots, e_n) . Alors

$$d f(a) \cdot h = d f(a) \cdot \left(\sum_{i=1}^{n} e_i^*(h) e_i \right)$$

$$= \sum_{i=1}^{n} e_i^*(h) d f(a) \cdot e_i \quad [\text{linéarité de d} f(a)]$$

$$= \sum_{i=1}^{n} e_i^*(h) D_{e_i} f(a) \quad [\text{cf. 1}]$$

$$= \sum_{i=1}^{n} e_i^*(h) \frac{\partial f}{\partial x_i}(a) \quad [\text{définition des dérivées partielles}]$$

5.3. Matrice Jacobienne d'une fonction différentiable sur ouvert de \mathbb{R}^n à valeurs dans \mathbb{R}^p

Notation. — Soient

- \bullet n, p des entiers naturels non nuls;
- $\mathcal{B}_n := (e_{n,1}, \dots, e_{n,n})$ la base canonique de \mathbf{R}^n ;
- $\mathcal{B}_p := (e_{p,1}, \dots, e_{p,n})$ la base canonique de \mathbf{R}^p et $\mathcal{B}_p^* := (e_{p,1}^*, \dots, e_{p,n}^*)$ sa base duale;
- Ω une partie ouverte de \mathbb{R}^n ;
- a un point de Ω ;
- une application

$$f \mid \Omega \longrightarrow \mathbf{R}^{p}$$

$$(x_{1}, \dots, x_{n}) \longmapsto (f_{1}(x_{1}, \dots, x_{n}), \dots, f_{p}(x_{1}, \dots, x_{n})) = \sum_{i=1}^{p} f_{i}(x_{1}, \dots, x_{n}) e_{p,i} \qquad [\forall i \in [1, p]] \ f_{i} = e_{p,i}^{*} \circ f]$$

différentiable en a.

David Blottière 12 version du 10 janvier 2025

Rappel 38. — D'après la proposition 23

$$\forall h \in \mathbf{R}^n \quad \mathrm{d}f(a) \cdot h = \sum_{j=1}^p \left(\mathrm{d}f_j(a) \cdot h \right) \, e_{p,j}$$

En particulier

$$\forall i \in [1, n] \quad \mathrm{d}f(a) \cdot e_{n,i} = \sum_{j=1}^{p} (\mathrm{d}f_j(a) \cdot e_{n,i}) \ e_{p,j}$$

i.e.

$$\forall i \in [1, n] \quad \frac{\partial f}{\partial x_i}(a) = \sum_{i=1}^p \frac{\partial f_j}{\partial x_i}(a) \, e_{p,j}$$

Proposition 39. — La matrice de l'application $df(a) \in \mathcal{L}(\mathbf{R}^n, \mathbf{R}^p)$, appelée matrice Jacobienne de f en a et notée $J_a(f)$, est donnée par

$$J_{a}(f) := \operatorname{Mat}_{\mathcal{B}_{n}, \mathcal{B}_{p}}(\mathrm{d}f(a)) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(a) & \frac{\partial f_{1}}{\partial x_{2}}(a) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\ \frac{\partial f_{2}}{\partial x_{1}}(a) & \frac{\partial f_{2}}{\partial x_{2}}(a) & \dots & \frac{\partial f_{2}}{\partial x_{n}}(a) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{p}}{\partial x_{1}}(a) & \frac{\partial f_{p}}{\partial x_{2}}(a) & \dots & \frac{\partial f_{p}}{\partial x_{n}}(a) \end{pmatrix}$$
 [matrice Jacobienne de f en a]

i.e.
$$J_a(f) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{(i,j) \in [\![1,n]\!]^2}$$
.

Exercice 40. — On admet que l'application

$$f \mid \mathbf{R}^3 \longrightarrow \mathbf{R}^2$$

 $(x,y,z) \longmapsto (x^2(y+1), xz^2)$

est différentiable et on considère un point $(a, b, c) \in \mathbf{R}^3$. Calculer la matrice Jacobienne $J_{(a,b,c)}f$ de f en (a,b,c) puis expliciter la différentielle df(a,b,c) de f en (a,b,c).

Exercice 41. — On admet que l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}^3$$
 $(x,y) \longmapsto \left(\sin(xy), y \cos(x), x y e^{y^2}\right)$

est différentiable et on considère un point $(a, b) \in \mathbf{R}^2$. Calculer la matrice Jacobienne $J_{(a,b)}f$ de f en (a, b) puis expliciter la différentielle $\mathrm{d}f(a, b)$ de f en (a, b).

5.4. Différentielle d'une fonction différentiable sur ouvert de \mathbb{R}^n à valeurs dans \mathbb{R} et gradient

Notation. — Soient

- *n* un entier naturel non nul;
- (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n ;
- $\langle \; \cdot \; , \; \cdot \; \rangle$ le produit scalaire usuel sur \mathbf{R}^n

$$\langle \cdot, \cdot \rangle \mid \mathbf{R}^n \times \mathbf{R}^n \longrightarrow \mathbf{R}$$

 $\langle \cdot, \cdot \rangle \mid ((x_1, \dots, x_n), (y_1, \dots, y_n)) \longmapsto \sum_{i=1}^n x_i y_i$

et $||\cdot||$ la norme associée

$$\|\cdot\|$$
 $R^n \longrightarrow R_+$ $\sqrt{\sum_{i=1}^n x_i^2}$

- Ω une partie ouverte de \mathbf{R}^n ;
- a un point de Ω ;
- une application :

$$f \mid \Omega \longrightarrow \mathbf{R}$$

 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application différentiable en a.

Théorème 42. — L'application

$$\begin{vmatrix} \mathbf{R}^n & \longrightarrow & \mathcal{L}(\mathbf{R}^n, \mathbf{R}) \\ x & \longmapsto & \langle x, \cdot \rangle & \mathbf{R}^n & \longrightarrow & \mathbf{R} \\ h & \longmapsto & \langle x, h \rangle \end{vmatrix}$$

est un isomorphisme de R-espaces vectoriels. Il s'agit d'un cas particulier du théorème de Riesz.

D'après le théorème de Riesz, il existe un unique vecteur v de \mathbb{R}^n qui représente $\mathrm{d}f(a) \in \mathcal{L}(\mathbb{R}^n,\mathbb{R})$, i.e.

$$\exists! v \in \mathbf{R}^n \quad \forall h \in \mathbf{R}^n \quad \mathrm{d}f(a) \cdot h = \langle v, h \rangle$$

Nous allons établir que ce vecteur v est le gradient de f en a, que nous définissons ci-dessous.

Définition 43. — Le gradient de f en a, noté $\nabla f(a)$ est défini par

$$\nabla f(a) := \left(\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right) \in \mathbf{R}^n$$

Proposition 44. — Pour tout $h \in \mathbb{R}^n$

$$df(a) \cdot h = \langle \nabla f(a), h \rangle$$

Notation. — On note S(0,1) la sphère unité de \mathbb{R}^n , i.e.

$$S(0,1) := \{ x \in \mathbf{R}^n : ||x|| = 1 \}$$

Proposition 45. — Supposons $\nabla f(a) \neq 0_{\mathbf{R}^n}$. L'application

$$\begin{vmatrix}
S(0,1) & \longrightarrow & \mathbf{R} \\
h & \longmapsto & D_h f(a)
\end{vmatrix}$$

atteint son maximum en l'unique point $\frac{\nabla f(a)}{||\nabla f(a)||}$.

Exercice 46. — On admet que l'application

$$f \mid 0, +\infty[\times]0, +\infty[\longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto xy + \frac{4}{x} + \frac{2}{y}$$

est différentiable sur $]0, +\infty[\times]0, +\infty[$.

- 1. Calculer $\nabla f(a, b)$, pour tout $(a, b) \in]0, +\infty[\times]0, +\infty[$.
- 2. Déterminer les points critiques de f, i.e. les points (a,b) de $]0,+\infty[\times]0,+\infty[$ tels que $\nabla f(a,b)=(0,0)$

6. Opérations sur les applications différentiables

6.1. Combinaison linéaire de deux applications différentiables

Proposition 47. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de E, $(f,g) \in F^{\Omega} \times F^{\Omega}$, $(\lambda, \mu) \in \mathbf{R}^2$ et a un point de Ω . Si les applications f et g sont différentiables en g, alors l'application

$$\lambda \cdot f + \mu \cdot g \mid \begin{array}{ccc} \Omega & \longrightarrow & F \\ x & \longmapsto & \lambda \cdot f(x) + \mu \cdot g(x) \end{array}$$

est différentiable en a :

$$d(\lambda \cdot f + \mu \cdot g)(a) = \lambda \cdot df(a) + \mu \cdot dg(a) \qquad [identit\'{e} \ dans \ \mathcal{L}(E, F)]$$

Exercice 48. — On note J la matrice de $\mathcal{M}_n(\mathbf{R})$ dont tous les coefficients valent 1 et f l'application définie par

$$f \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathcal{M}_n(\mathbf{R})$$

$$A \longmapsto A^2 + \operatorname{tr}(A) J$$

Démontrer que f est différentiable sur $\mathcal{M}_n(\mathbf{R})$ et calculer sa différentielle $\mathrm{d}f(A)$ en tout point A de $\mathcal{M}_n(\mathbf{R})$.

6.2. Composée d'applications différentiables par une application multilinéaire

Proposition 49. — Soient E, F_1, \ldots, F_n, G des **R**-espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f_1 \in F_1^{\Omega}, \ldots, f_n \in F_n^{\Omega}$, une application

$$M: F_1 \times F_2 \times \ldots \times F_n \longrightarrow G$$

une application multilinéaire et $a \in \Omega$. On note f l'application définie par

$$f \mid \Omega \longrightarrow G$$

 $x \longmapsto M(f_1(x), \dots, f_n(x))$

Si les application f_1, \ldots, f_n sont différentiables en a, alors l'application f est différentiable en a et, pour tout $h \in E$

$$df(a) \cdot h = M (df_1(a) \cdot h, f_2(a), \dots, f_n(a)) + M (f_1(a), df_2(a) \cdot h, \dots, f_n(a)) + \dots + M (f_1(a), f_2(a), \dots, df_n(a) \cdot h)$$

Exercice 50. — Soit f l'application définie par

$$f \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathcal{M}_n(\mathbf{R})$$
$$A \longmapsto A^3$$

Démontrer que f est différentiable sur $\mathcal{M}_n(\mathbf{R})$ et calculer sa différentielle df.

6.3. Composée de deux applications différentiables ou règle de la chaîne

Notation. — On considère

- $(E, N_E), (F, N_F), (G, N_G)$ des **R**-espaces vectoriels normés de dimension finie;
- Ω_E un ouvert de E et Ω_F un ouvert de F;
- $f: \Omega_E \longrightarrow F$ une application telle que, pour tout $x \in \Omega_E$, $f(x) \in \Omega_F$;
- $g: \Omega_F \longrightarrow G;$
- a un point de Ω_E .

Théorème 51. — Si l'application f est différentiable en a et l'application g est différentiable en f(a), alors l'application

$$g \circ f \mid \begin{array}{ccc} \Omega_E & \longrightarrow & G \\ x & \longmapsto & g(f(x)) \end{array}$$

est différentiable en a et

$$d(g \circ f)(a) = dg(f(a)) \circ df(a)$$
 [identité dans $\mathcal{L}(E, G)$]

Démonstration.

- (a) Une boule ouverte $B_F(f(a), r)$ incluse dans Ω_F . Comme a appartient à Ω_F , qui est ouvert dans F, il existe r > 0 tel que $B_F(f(a), r) \subset \Omega_F$.
- (b) Une boule ouverte $B_E(a,\rho)$ incluse dans Ω_E et envoyée dans $B_F(f(a),r)$ par f. Comme l'application f est différentiable en a, elle est continue en a. Ainsi, il existe $\rho > 0$ tel que, pour tout $x \in B_E(a,\rho)$, $f(x) \in B_F(f(a),r)$.
- (c) Développement limité à l'ordre 1 de f en a.

Posons

$$\varepsilon \mid B_E(0_E, \rho) \longrightarrow F$$

$$h \longmapsto \begin{cases} 0_F & \text{si } h = 0_E \\ \frac{f(a+h) - f(a) - df(a) \cdot h}{N_E(h)} & \text{si } h \neq 0_E \end{cases}$$

de sorte que, pour tout $h \in B_E(0_E, \rho)$

$$f(a+h) = f(a) + df(a) \cdot h + N_E(h) \varepsilon(h)$$

Comme f est différentiable au point $a, \varepsilon(h) \xrightarrow[h \to 0_E]{} 0_F$.

(d) Développement limité à l'ordre 1 de g en f(a).

Posons

$$\eta \mid B_F(0_F, r) \longrightarrow G$$

$$k \longmapsto \begin{cases} 0_G & \text{si } k = 0_F \\ \frac{g(f(a) + k) - g(f(a)) - dg(f(a)) \cdot k}{N_F(k)} & \text{si } k \neq 0_F \end{cases}$$

de sorte que, pour tout $k \in B_F(0_F, r)$

$$g(f(a) + k) = g(f(a)) + dg(f(a)) \cdot k + N_F(k) \eta(k)$$

Comme g est différentiable au point f(a), $\eta(k) \xrightarrow[k \to 0_F]{} 0_G$.

(e) Composition des deux DL1 obtenus en (c) et (d). Soit $h \in B_E(0_E, \rho)$. Comme

$$q(f(a+h)) = q(f(a) + df(a) \cdot h + N_E(h)\varepsilon(h))$$
 et $df(a) \cdot h + N_E(h)\varepsilon(h) = f(a+h) - f(a) \in B_F(0_F, r)$

il vient

$$g(f(a+h)) = g(f(a)) + dg(f(a)) \cdot (df(a) \cdot h + N_E(h)\varepsilon(h)) + N_F(df(a) \cdot h + N_E(h)\varepsilon(h)) \eta(f(a+h) - f(a))$$

puis, comme l'application dg(f(a)) est linéaire

$$g(f(a+h)) = g(f(a)) + \underbrace{dg(f(a)) \cdot (df(a) \cdot h)}_{=dg(f(a)) \circ df(a) \cdot h} + \kappa(h)$$

οù

$$\kappa(h) = \mathrm{d}g(f(a)) \cdot (N_E(h)\,\varepsilon(h)) + N_F(\mathrm{d}f(a)\cdot h + N_E(h)\,\varepsilon(h))\,\eta(f(a+h) - f(a))$$

$$= N_E(h)\,\mathrm{d}g(f(a))\cdot\varepsilon(h) + N_F(\mathrm{d}f(a)\cdot h + N_E(h)\,\varepsilon(h))\,\eta(f(a+h) - f(a)) \qquad [\mathrm{lin\'earit\'e}\;\mathrm{de}\;\mathrm{d}g(f(a))]$$

Pour conclure, il reste à établir que

$$\frac{\kappa(h)}{N_E(h)} \xrightarrow[h \to 0_E]{} 0_G$$

(f) Étude du reste $\kappa(h)$.

Soit $h \in B_E(0_E, \rho) \setminus \{0_E\}$. L'inégalité triangulaire et l'homogénéité des normes N_F et N_G livrent

$$N_G(\kappa(h)) \leqslant N_E(h) N_G \left(\mathrm{d}g(f(a)) \cdot \varepsilon(h) \right) + \left(N_F(\mathrm{d}f(a) \cdot h) + N_E(h) N_F(\varepsilon(h)) \right) N_G(\eta(f(a+h) - f(a)))$$

Les applications df(a) et dg(f(a)) sont continues, puisque linéaires entre espaces de dimension finie. Nous pouvons donc considérer leurs normes subordonnées, pour obtenir

$$N_G(\kappa(h)) \leq N_E(h) ||| dg(f(a)) ||| N_F(\varepsilon(h)) + (||| df(a) ||| N_E(h) + N_E(h) N_F(\varepsilon(h))) N_G(\eta(f(a+h) - f(a)))$$

puis

$$N_{G}\left(\frac{\kappa(h)}{N_{E}(h)}\right) \leqslant |||\operatorname{d}g(f(a))|||\underbrace{N_{F}(\varepsilon(h))}_{h\to 0_{E}} + \underbrace{(|||\operatorname{d}f(a)||| + N_{F}(\varepsilon(h)))}_{h\to 0_{E}} \underbrace{N_{G}(\eta(f(a+h) - f(a)))}_{h\to 0_{E}}$$

où la continuité de f en a joue une nouvelle fois un rôle. Nous concluons alors avec le théorème d'encadrement.

6.4. Dérivée le long d'un arc

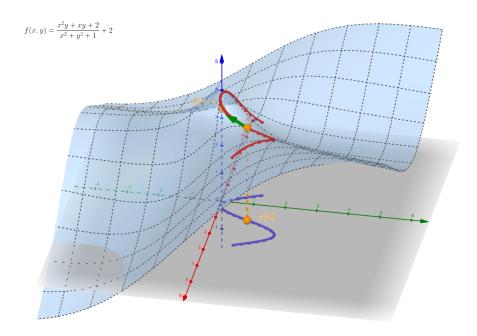
Notation. — Soient

- I un intervalle de \mathbf{R} ;
- E, F des **R**-espaces vectoriels de dimension finie;
- Ω une partie ouverte de E;
- un arc $\gamma: I \longrightarrow E$ tel que, pour tout $t \in I$, $\gamma(t) \in \Omega$;
- une application $f: \Omega \longrightarrow F$;
- $t_0 \in I$.

Corollaire 52. — Si l'arc γ est dérivable en t_0 et l'application f différentiable en $\gamma(t_0)$, alors l'arc $f \circ \gamma \colon I \longrightarrow F$ est dérivable en t_0 et

$$(f \circ \gamma)'(t_0) = d f(\gamma(t_0)) \cdot \gamma'(t_0)$$
 [identité entre vecteurs de F]

Interprétation géométrique de la dérivée le long d'un arc



Exercice 53. — Soient I un intervalle de \mathbf{R} , E un \mathbf{R} -espace vectoriel de dimension finie, Ω une partie ouverte et convexe de E, une application $f:\Omega\longrightarrow E$ différentiable sur Ω , a et b deux points de Ω . Considérons l'application

$$\begin{array}{c|cccc} \gamma & \begin{bmatrix} [0,1] & \longrightarrow & E \\ t & \longmapsto & t \cdot a + (1-t) \cdot b \end{array}$$

Justifier que l'application $f \circ \gamma$ est dérivable sur [0,1] et calculer sa dérivée sur [0,1].

Exercice 54. — Soient I un intervalle de \mathbf{R} , Ω une partie ouverte de \mathbf{R}^n ,

$$f \mid \Omega \longrightarrow \mathbf{R}^p$$
 $x \longmapsto (f_1(x), \dots, f_p(x))$

David Blottière 17 version du 10 janvier 2025

une application différentiable sur Ω, x_1, \ldots, x_n des fonctions dérivables de I dans \mathbf{R} telles que

$$\forall t \in I \quad (x_1(t), \dots, x_n(t)) \in \Omega$$

Démontrer que la fonction

$$g \mid I \longrightarrow \mathbf{R}^p$$

 $t \longmapsto (f(x_1(t), \dots, x_n(t)))$

est dérivable sur I et que

$$\forall t \in I \quad g'(t) = \left(\sum_{i=1}^{n} x_i'(t) \ \partial_i f_1(x_1(t), \dots, x_n(t)) \ , \ \sum_{i=1}^{n} x_i'(t) \ \partial_i f_2(x_1(t), \dots, x_n(t)) \ , \dots \ , \ \sum_{i=1}^{n} x_i'(t) \ \partial_i f_p(x_1(t), \dots, x_n(t)) \right)$$

6.5. Dérivées partielles d'une composée de deux applications différentiables

Notation. — On considère

- Ω_n un ouvert de \mathbf{R}^n et Ω_p un ouvert de \mathbf{R}^p ;
- deux applications

$$f \mid \Omega_n \longrightarrow \mathbf{R}^p$$
 et $g \mid \Omega_p \longrightarrow \mathbf{R}^q$ $(f_1(x), \dots, f_p(x))$

• a un point de Ω_n .

On suppose que

$$\forall x \in \Omega_n \quad f(x) \in \Omega_p$$

de sorte que la fonction

$$h = g \circ f \mid \begin{array}{ccc} \Omega_n & \longrightarrow & \mathbf{R}^q \\ x & \longmapsto & g(f(x)) = (h_1(x), \dots, h_q(x)) \end{array}$$

est bien définie.

Théorème 55. — Si l'application f est différentiable en a et l'application g est différentiable en f(a), alors

$$J_a(g \circ f) = J_{f(a)}(g) \times J_a(f)$$

et

$$\forall (i,j) \in [1,q] \times [1,n] \qquad \frac{\partial h_i}{\partial x_j}(a) = \sum_{k=1}^p \frac{\partial g_i}{\partial y_k}(f(a)) \frac{\partial f_k}{\partial x_j}(a)$$

où les composantes de x dans \mathbf{R}^n sont notée (x_1,\ldots,x_n) et celles de y dans \mathbf{R}^p sont notées (y_1,\ldots,y_p) .

Remarque 56. — Si on spécialise le théorème 55 au cas où g est une fonctions à valeurs réelles, i.e. si q=1, alors

$$\forall j \in [1, n]$$
 $\frac{\partial g \circ f}{\partial x_j}(a) = \sum_{k=1}^p \frac{\partial g}{\partial y_k}(f(a)) \frac{\partial f_k}{\partial x_j}(a)$

Exercice 57. — Soient Ω_n un ouvert de \mathbb{R}^n , une application

$$f \mid \Omega_n \longrightarrow \mathbf{R}^p$$
 $x \longmapsto (f_1(x), \dots, f_p(x))$

différentiable sur Ω_n , Ω_m un ouvert de \mathbf{R}^m , x_1, \ldots, x_n des applications de Ω_m dans \mathbf{R} différentiables sur Ω_m telles que

$$\forall (u_1, \dots, u_m) \in \Omega_m \quad (x_1(u_1, \dots, u_m), \dots, x_n(u_1, \dots, u_m)) \in \Omega_n$$

et g l'application définie par

$$g \mid \Omega_m \longrightarrow \mathbf{R}^p$$

 $(u_1, \dots, u_m) \longmapsto f(x_1(u_1, \dots, u_m), \dots, x_n(u_1, \dots, u_m))$

Démontrer que l'application g est différentiable sur Ω_m et que, pour tout $a \in \Omega_m$, pour tout $i \in [1, m]$

$$\frac{\partial g}{\partial u_i}(a) = \sum_{i=1}^n \frac{\partial x_i}{\partial u_i}(a) \cdot \partial_j f(x_1(a), \dots, x_n(a)).$$

où les composantes de u dans \mathbf{R}^m sont notée (u_1, \ldots, u_m) .

7. Applications de classe C^1

7.1. Définition d'une application de classe \mathcal{C}^1

Définition 58. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f: \Omega \longrightarrow F$ une application. On dit que l'application f est de classe \mathcal{C}^1 sur Ω si

- 1. l'application f est différentiable sur Ω ;
- 2. sa différentielle d $f: \Omega \longrightarrow \mathcal{L}(E, F)$ est continue sur Ω .

7.2. Caractérisation des applications de classe \mathcal{C}^1 par les dérivées partielles

Théorème 59. — Soient Ω une partie ouverte de \mathbb{R}^n ,

$$f \mid \Omega \longrightarrow \mathbf{R}^p$$

 $(x_1, \dots, x_n) \longmapsto (f_1(x_1, \dots, x_n), \dots, f_p(x_1, \dots, x_n))$

une application. Alors la fonction f est de classe C^1 sur Ω si et seulement si toutes ses dérivées partielles existent et sont continues sur Ω , i.e.

$$f \ est \ de \ classe \ \mathcal{C}^1 \ sur \ \Omega \quad \Longleftrightarrow \quad \forall \, (i,j) \in [\![1,p]\!] \times [\![1,n]\!] \quad \frac{\partial f_i}{\partial x_j} \ est \ d\acute{e}finie \ et \ continue \ sur \ \Omega$$

Exemple 60. — On souhaite étudier la différentiabilité et, cas échéant, calculer la différentielle de l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}^2$$

$$(x,y) \longmapsto \left(x^2 + xy - y^3, \cos\left(\frac{x}{y^2 + 1}\right)\right)$$

en s'appuyant sur le critère C^1 .

• Introduction des fonctions composantes. Si on pose

$$f_1: \mathbf{R}^2 \longrightarrow \mathbf{R} \; ; \; (x,y) \longmapsto x^2 + xy - y^3 \qquad \text{et} \qquad f_2: \mathbf{R}^2 \longrightarrow \mathbf{R} \; ; \; (x,y) \longmapsto \cos\left(\frac{x}{y^2 + 1}\right)$$

alors pour tout $(x, y) \in \mathbf{R}^2$, $f(x, y) = (f_1(x, y), f_2(x, y))$.

• Étude de la dérivée partielle $\frac{\partial f_1}{\partial x}$. Soit $y \in \mathbf{R}$ fixé. L'application

$$f_1(\cdot,y)\colon x\longmapsto f_1(x,y)=x^2+xy-y^3$$

est polynomiale, donc dérivable sur \mathbf{R} . La dérivée partielle de f_1 par rapport à x existe donc sur \mathbf{R}^2 tout entier et elle est donnée par

$$\frac{\partial f_1}{\partial x}$$
: $\mathbf{R}^2 \longrightarrow \mathbf{R}$; $(x,y) \longmapsto 2x + y$

qui est continue sur \mathbb{R}^2 .

• Étude de la dérivée partielle $\frac{\partial f_1}{\partial y}$. Soit $x \in \mathbf{R}$ fixé. L'application

$$f_1(x, \cdot): y \longmapsto f_1(x, y) = x^2 + xy - y^3$$

est polynomiale, donc dérivable sur \mathbf{R} . La dérivée partielle de f_1 par rapport à y existe donc sur \mathbf{R}^2 tout entier et elle est donnée par

$$\frac{\partial f_1}{\partial y} : \mathbf{R}^2 \longrightarrow \mathbf{R} \; ; \; (x,y) \longmapsto x - 3y^2$$

qui est continue sur \mathbb{R}^2 .

• Étude de la dérivée partielle $\frac{\partial f_2}{\partial x}$. Soit $y \in \mathbf{R}$ fixé. L'application

$$f_2(\cdot,y)\colon x\longmapsto f_2(x,y)=\cos\left(\frac{x}{y^2+1}\right)$$

est la composée d'une fonction rationnelle par cos, donc dérivable sur \mathbf{R} . La dérivée partielle de f_2 par rapport à x existe donc sur \mathbf{R}^2 tout entier et elle est donnée par

$$\frac{\partial f_2}{\partial x} \colon \mathbf{R}^2 \longrightarrow \mathbf{R} \; ; \; (x,y) \longmapsto -\frac{1}{y^2+1} \sin\left(\frac{x}{y^2+1}\right)$$

qui est continue sur \mathbb{R}^2 .

• Étude de la dérivée partielle $\frac{\partial f_2}{\partial y}$. Soit $x \in \mathbf{R}$ fixé. L'application

$$f_2(x, \cdot) : y \longmapsto f_2(x, y) = \cos\left(\frac{x}{y^2 + 1}\right)$$

est la composée d'une fonction rationnelle par cos, donc dérivable sur \mathbf{R} . La dérivée partielle de f_2 par rapport à y existe donc sur \mathbf{R}^2 tout entier et elle est donnée par

$$\frac{\partial f_2}{\partial y} \colon \mathbf{R}^2 \longrightarrow \mathbf{R} \; ; \; (x,y) \longmapsto \frac{2xy}{(y^2+1)^2} \sin\left(\frac{x}{y^2+1}\right)$$

qui est continue sur \mathbb{R}^2 .

• D'après le critère \mathcal{C}^1 , la fonction f est de classe \mathcal{C}^1 sur \mathbf{R}^2 , donc différentiable sur \mathbf{R}^2 et pour tout $(a,b) \in \mathbf{R}^2$

$$\operatorname{Mat}_{\mathcal{B}}(\mathrm{d}f(a,b)) = \begin{pmatrix} 2a+b & a-3b^2 \\ -\frac{1}{b^2+1}\sin\left(\frac{a}{b^2+1}\right) & \frac{2ab}{\left(b^2+1\right)^2}\sin\left(\frac{a}{b^2+1}\right) \end{pmatrix}$$

où \mathcal{B} désigne la base canonique de \mathbf{R}^2 et donc pour tout $(h_1,h_2)\in\mathbf{R}^2$

$$df(a,b) \cdot (h_1,h_2) = \left((2a+b) h_1 + (a-3b^2) h_2, -\frac{1}{b^2+1} \sin\left(\frac{a}{b^2+1}\right) h_1 + \frac{2ab}{(b^2+1)^2} \sin\left(\frac{a}{b^2+1}\right) h_2 \right).$$

Exercice 61. — Soit

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \atop (x,y) \longmapsto f(x,y)$$

une application différentiable sur \mathbb{R}^2 . On lui associe l'application

$$g \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

 $(r,\theta) \longmapsto f(r\cos(\theta), r\sin(\theta))$

Démontrer que la fonction g est différentiable sur \mathbb{R}^2 , puis exprimer les dérivées partielles de g en fonction de celles de f.

Exercice 62. — Soit $\alpha \in \mathbf{R}$. On considère l'application définie sur \mathbf{R}^2 par

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Justifier que l'application f est bien définie.
- 2. Déterminer α pour que f soit continue sur \mathbb{R}^2 .
- 3. Dans cette question, on suppose que $\alpha = 0$.
 - (a) Justifier l'existence de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur $\mathbf{R}\setminus\{(0,0)\}$ et les calculer.
 - (b) Justifier l'existence de $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ et donner leurs valeurs.
 - (c) La fonction f est-elle de classe C^1 sur \mathbf{R}^2 ?

Exercice 63. — On définit deux fonctions

$$f \mid \begin{array}{ccc} \mathbf{R}^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & \sin(x^2-y^2) \end{array} \qquad \text{et} \qquad g \mid \begin{array}{ccc} \mathbf{R}^2 & \longrightarrow & \mathbf{R} \\ (x,y) & \longmapsto & (x+y,x-y) \end{array}$$

- 1. Justifier que les fonctions f et g sont différentiables en tout vecteur $(x, y) \in \mathbf{R}^2$ et écrire la matrice jacobienne de f puis de g en (x, y).
- 2. Pour $(x,y) \in \mathbf{R}^2$, déterminer l'image d'un vecteur $(u,v) \in \mathbf{R}^2$ par l'application linéaire $\mathrm{d}(f \circ g)((x,y))$ en utilisant les deux méthodes suivantes
 - (a) en calculant $f \circ g$;
 - (b) en utilisant le produit de deux matrices jacobiennes.

7.3. Opérations sur les applications de classe \mathcal{C}^1

Proposition 64. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte de $E, (f, g) \in F^{\Omega} \times F^{\Omega}, (\lambda, \mu) \in \mathbf{R}^2$ et a un point de Ω . Si les applications f et g sont de classe \mathcal{C}^1 sur Ω , alors l'application

$$\lambda \cdot f + \mu \cdot g \mid \begin{array}{ccc} \Omega & \longrightarrow & F \\ x & \longmapsto & \lambda \cdot f(x) + \mu \cdot g(x) \end{array}$$

est de classe C^1 sur Ω .

Proposition 65. — Soient E, F_1, \ldots, F_n, G des **R**-espaces vectoriels de dimension finie, Ω une partie ouverte de $E, f_1 \in F_1^{\Omega}, \ldots, f_n \in F_n^{\Omega}$, une application

$$M: F_1 \times F_2 \times \ldots \times F_n \longrightarrow G$$

une application multilinéaire et $a \in \Omega$. On note f l'application définie par

$$f \mid \Omega \longrightarrow G$$
 $x \longmapsto M(f_1(x), \dots, f_n(x))$

Si les application f_1, \ldots, f_n sont de classe C^1 sur Ω , alors l'application f est de classe C^1 sur Ω .

Théorème 66. — On considère

- E, F, G des **R**-espaces vectoriels de dimension finie;
- Ω_E un ouvert de E et Ω_F un ouvert de F;
- $f: \Omega_E \longrightarrow F$ une application telle que, pour tout $x \in \Omega_E$, $f(x) \in \Omega_F$;
- $g: \Omega_F \longrightarrow G;$
- a un point de Ω_E .

Si l'application f est différentiable sur Ω_E et l'application g est différentiable sur Ω_F alors l'application

$$g \circ f \mid \begin{array}{ccc} \Omega_E & \longrightarrow & G \\ x & \longmapsto & g(f(x)) \end{array}$$

est de classe C^1 sur Ω .

7.4. Intégration d'une fonction de classe \mathcal{C}^1 le long d'un arc

Théorème 67. — Soient E, F des \mathbf{R} -espace vectoriel de dimension finie, Ω une partie ouverte de E, un arc $\gamma \colon [0,1] \longrightarrow E$ de classe \mathcal{C}^1 sur [0,1] tel que :

$$\forall t \in [0,1] \quad \gamma(t) \in \Omega \qquad [l'arc \ est \ tracé \ sur \ \Omega]$$

 $a := \gamma(0)$ et $b = \gamma(1)$ les extrémités de l'arc γ , une application $f : \Omega \longrightarrow F$ de classe C^1 sur Ω . Alors

$$f(b) - f(a) = \int_0^1 df (\gamma(t)) \cdot \gamma'(t) dt.$$

Exercice 68. — Soient $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien, $||\cdot||$ la norme sur E associée au produit scalaire $\langle \cdot, \cdot \rangle$, $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E, Ω une partie ouverte convexe de E, a un point de Ω et $f: \Omega \longrightarrow \mathbf{R}$ une application de classe \mathcal{C}^1 sur Ω .

1. Justifier que, pour tout $i \in [1, n]$, le nombre réel

$$\frac{\partial f}{\partial x_i}(a) := \lim_{t \to 0_{\mathbf{R}}} \frac{f(a + te_i) - f(a)}{t} \qquad [i\text{-i\`eme d\'eriv\'ee partielle de } f \text{ en } a \text{ dans la base } \mathcal{B}]$$

existe et en donner une expression à l'aide de la différentielle df(a) de f en a.

2. Justifier qu'il existe un unique vecteur $\nabla f(a) \in E$, appelé gradient de f en a, tel que

$$\forall h \in E \quad df(a) \cdot h = \langle \nabla f(a), h \rangle$$

et en donner une expression à l'aide des dérivées partielles de f en a dans la base \mathcal{B} .

3. On suppose que le gradient de f est borné sur Ω , i.e.

$$\exists k > 0 \quad \forall x \in \Omega \quad || \nabla f(x) || \leq k$$

Démontrer que la fonction f est k-lipschitzienne sur Ω .

7.5. Caractérisation des fonctions constantes sur un ouvert connexe par arcs

Théorème 69. — Soient E, F des \mathbf{R} -espaces vectoriels de dimension finie, Ω une partie ouverte connexe par arcs de $E, f: \Omega \longrightarrow F$ une application. Alors

$$f \ est \ constante \ sur \ \Omega \quad \Longleftrightarrow \quad \left\{ \begin{array}{c} f \ est \ diff\'erentiable \ sur \ \Omega \\ et \\ \forall \ x \in \Omega \quad \mathrm{d} f(x) = 0_{\mathcal{L}(E,F)} \end{array} \right.$$

Exercice 70. — Déterminer toutes les applications $f: \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathbf{R}$ différentiable sur $\mathcal{M}_n(\mathbf{R})$ qui vérifient

$$\forall A \in \mathcal{M}_n(\mathbf{R}) \quad \mathrm{d}f(A) = \mathrm{Tr}$$

7.6. Étude d'une équation aux dérivées partielles du premier ordre

Exercice 71. —

1. Soit $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$, $(x,y) \longmapsto f(x,y)$ une fonction de classe \mathcal{C}^1 sur \mathbf{R}^2 telle que :

$$\forall (x,y) \in \mathbf{R}^2 \quad \frac{\partial f}{\partial y}(x,y) = 0$$

Démontrer qu'il existe une fonction $\varphi \colon \mathbf{R} \longrightarrow \mathbf{R}$, de classe \mathcal{C}^1 sur \mathbf{R} , telle que

$$\forall (x, y) \in \mathbf{R}^2, \quad f(x, y) = \varphi(x)$$

2. (a) Soit $\varphi \colon \mathbf{R} \longrightarrow \mathbf{R}$ une fonction de classe \mathcal{C}^1 sur \mathbf{R} . Démontrer que l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (x,y) \longmapsto \varphi(x+y)$$

est de classe \mathcal{C}^1 et qu'elle vérifie

(E)
$$\forall (x,y) \in \mathbf{R}^2 \quad \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = 0$$

(b) Réciproquement, soit $f \colon \mathbf{R}^2 \longrightarrow \mathbf{R}$ une fonction de classe \mathcal{C}^1 sur \mathbf{R}^2 telle que :

(E)
$$\forall (x,y) \in \mathbf{R}^2 \quad \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = 0$$

Démontrer qu'il existe une fonction $\varphi \colon \mathbf{R} : \longrightarrow \mathbf{R}$, de classe \mathcal{C}^1 sur \mathbf{R} , telle que

$$\forall (x,y) \in \mathbf{R}^2 \quad f(x,y) = \varphi(x+y)$$

On pourra considérer le changement de variable $x = \frac{u+v}{2}$ et $y = \frac{u-v}{2}$.

8. Deux méthodes classiques pour étudier la différentiabilité

8.1. Calculer un DL1 de f en un point a en développant f(a+h)

Notation. — Soient

- E un \mathbf{R} -espace vectoriel de dimension finie, muni d'une norme N_E (elles sont toutes équivalentes);
- F un \mathbf{R} -espace vectoriel de dimension finie, muni d'une norme N_F (elles sont toutes équivalentes);
- Ω une partie ouverte de E;
- $f: \Omega \longrightarrow F$ une application;
- a un point de Ω .

Pour étudier la différentiabilité de f en a, on peut chercher à développer la quantité f(a+h), pour $h \in E$ un vecteur au voisinage de 0_E et chercher à obtenir une expression de la forme

 $f(a+h) = f(a) + \underbrace{L(h)}_{\text{linéaire en }h} + \underbrace{r(h)}_{\text{reste}}$

İr

Alors, si l'on prouve, avec le plus grand soin, que $r(h) = \sum_{h \to 0_E} o(N_E(h))$, alors

- 1. l'application f est différentiable en a;
- 2. df(a) = L.

Exemple 72. — Dans l'exercice 22, nous suivi cette démarche pour établir que l'application

$$f \mid \begin{array}{ccc} \mathcal{M}_n(\mathbf{R}) & \longrightarrow & \mathcal{M}_n(\mathbf{R}) \\ A & \longmapsto & A^2 \end{array}$$

est différentiable en tout point A de $\mathcal{M}_n(\mathbf{R})$ et que

$$df(A) \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathcal{M}_n(\mathbf{R}) \\ H \longmapsto AH + HA$$

Exercice 73. — Soient $n \ge 2$ un entier et $||\cdot||$ une norme sous-multiplicative sur $\mathcal{M}_n(\mathbf{R})$. On définit l'application f par

$$f \mid \mathbf{GL}_n(\mathbf{R}) \longrightarrow \mathcal{M}_n(\mathbf{R})$$

$$A \longmapsto A^{-1}$$

1. Démontrer que pour tout $H \in B\left(0_{\mathcal{M}_n(\mathbf{R})}, 1\right)$, la série $\sum (-1)^p H^p$ converge et calculer le produit

$$(I_n + H) \left(\sum_{p=0}^{+\infty} (-1)^p H^p \right)$$

2. Démontrer que l'application f est différentiable en I_n et que pour tout $H \in \mathcal{M}_n(\mathbf{R})$

$$\mathrm{d}f(I_n)\cdot H = -H$$

3. Soit $A \in GL_n(\mathbf{R})$. Démontrer que f est différentiable en A et que pour tout $H \in \mathcal{M}_n(\mathbf{R})$:

$$df(A) \cdot H = -A^{-1} H A^{-1}$$

8.2. Appliquer le critère fondamental \mathcal{C}^1 pour une fonction de plusieurs variables

Notation. — Soient

- $n \ge 1$ et $m \ge 1$ des nombres entiers;
- $\mathcal{B}_n = (e_1, \dots, e_n)$ la base canonique de \mathbf{R}^n ;
- $\mathcal{B}_m = (e'_1, \dots, e'_m)$ la base canonique de \mathbf{R}^m ;
- Ω une partie ouverte de \mathbf{R}^n ;
- $f: \Omega \longrightarrow \mathbf{R}^m$; $(x_1, \ldots, x_n) \longmapsto (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$ une application.

Pour étudier la différentiabilité de f sur Ω tout entier, on peut, pour chaque couple $(i,j) \in [1,n] \times [1,m]$,

- fixer toutes les variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ (toutes sauf x_i donc)
- considérer la fonction d'une variable réelle

$$f_i(x_1,\ldots,x_{i-1},\cdot,x_{i+1},\cdot,x_n)\colon x_i\longmapsto f_i(x_1,\ldots,x_n)$$

- justifier la dérivabilité de la fonction d'une variable réelle $f_j(x_1,\ldots,x_{i-1},\cdot,x_{i+1},\cdot,x_n)$
- ullet calculer sa dérivée qui est, par définition, la i-ème dérivée partielle de la fonction f_j

$$\frac{\partial f_j}{\partial x_i}$$
: $x_i \longmapsto$ formule explicite à calculer

• mentionner la continuité de la fonction $\frac{\partial f_j}{\partial x_i}$ sur Ω (l'existence seule des dérivées partielles n'assure pas la différentiabilité)

et enfin citer le critère \mathcal{C}^1 qui livre

- 1. le caractère \mathcal{C}^1 de f sur Ω et donc, en particulier sa différentiabilité sur Ω
- 2. pour tout $a \in \Omega$

Ĭ¥

$$\operatorname{Mat}_{\mathcal{B}_n,\mathcal{B}_m}(\underline{f}(a)) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$$
 [matrice Jacobienne de f en a]

Exemple 74. — Dans l'exemple 60, nous suivi cette démarche pour établir que l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}^2$$
 $(x,y) \longmapsto \left(x^2 + xy - y^3, \cos\left(\frac{x}{y^2 + 1}\right)\right)$

est différentiable sur \mathbf{R}^2 et que pour tout $(a,b) \in \mathbf{R}^2$

$$\operatorname{Mat}_{\mathcal{B}}(\mathrm{d}f(a,b)) = \begin{pmatrix} 2a+b & a-3b^2 \\ -\frac{1}{b^2+1}\sin\left(\frac{a}{b^2+1}\right) & \frac{2ab}{\left(b^2+1\right)^2}\sin\left(\frac{a}{b^2+1}\right) \end{pmatrix}$$

où \mathcal{B} désigne la base canonique de \mathbb{R}^2 .

Exercice 75. — Justifier que l'application

$$f \mid 0, +\infty[\times]0, +\infty[\longrightarrow \mathbf{R} \atop (x,y) \longmapsto xy + \frac{\ln(x)}{y}$$

est différentiable sur $]0,+\infty[\times]0,+\infty[$ et expliciter sa différentielle.

8.3. Différentiabilité et différentielle du déterminant : deux approches (HP)

Exercice 76. — Soit $n \ge 2$ un nombre entier. Soit l'application

$$f \mid \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathbf{R}$$

$$A \longmapsto \det(A)$$

- 1. Soit $H \in \mathcal{M}_n(\mathbf{R})$. Écrire $f(I_n + H)$ comme une somme sur les éléments du groupe symétrique \mathfrak{S}_n .
- 2. Déduire que la question 1 que

$$f(I_n + H) = \underset{H \to 0_{\mathcal{M}_n(\mathbf{K})}}{=} 1 + \operatorname{tr}(H) + \operatorname{o}(||H||)$$

en écrivant un développement limité à l'ordre 1 de l'application f en I_n . Qu'en déduire pour l'application f?

3. Justifier que l'application f est de classe \mathcal{C}^1 sur $\mathcal{M}_n(\mathbf{R})$ et, en considérant des dérivées directionnelles, démontrer que

$$\forall H \in \mathcal{M}_n(\mathbf{R}) \quad \mathrm{d}f(I_n) \cdot H = \mathrm{tr}(H)$$

4. Soit $A \in \mathbf{GL}_n(\mathbf{R})$. Démontrer que

$$f(A+H) = \underset{H \to 0_{\mathcal{M}_n(\mathbf{K})}}{=} \det(A) + \operatorname{tr}\left(\operatorname{Com}(A)^\top H\right) + \operatorname{o}\left(||H||\right)$$

Que peut-on déduire pour l'application f?

9. Applications de classe \mathcal{C}^k

9.1. Dérivées partielles d'ordre k

Définition 77. — Soient Ω un ouvert de \mathbb{R}^n , F un \mathbb{R} -espace vectoriel de dimension finie,

$$f \mid \Omega \longrightarrow F$$
 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application, $k \ge 2$ un entier et $(i_1, \ldots, i_k) \in [\![1, n]\!]^k$. On dit que l'application admet une dérivée partielle d'ordre k pour le multi-indice (i_1, \ldots, i_k) si

1. la fonction f admet une dérivée partielle d'ordre k-1 pour le multi-indice (i_2,\ldots,i_k) , que l'on note

$$\frac{\partial^{k-1} f}{\partial x_{i_2} \dots \partial x_{i_k}}$$

2. la fonction $\frac{\partial^{k-1} f}{\partial x_{i_2} \dots \partial x_{i_k}}$ admet une dérivée partielle suivant la variable x_{i_1} que l'on note

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} := \frac{\partial}{\partial x_{i_1}} \left(\frac{\partial^{k-1} f}{\partial x_{i_2} \dots \partial x_{i_k}} \right)$$

Exercice 78. — Démontrer que, pour tout $(i_1, i_2) \in [1, 2]^2$, la fonction :

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

 $(x_1, x_2) \longmapsto \sin(x_1^2 + x_2^3)$

admet une dérivée partielle d'ordre 2 pour le multi-indice (i_1, i_2) et calculer $\frac{\partial f}{\partial x_{i_1} \partial x_{i_2}}$.

9.2. Définition d'une applications de classe \mathcal{C}^k

Définition 79. — Soient Ω un ouvert de \mathbb{R}^n , F un \mathbb{R} -espace vectoriel de dimension finie,

$$f \mid \Omega \longrightarrow F$$
 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application, $k \ge 2$ un entier. On dit que l'application f est de classe C^k sur Ω si, pour tout $(i_1, \ldots, i_k) \in [\![1, n]\!]^k$

- **1.** la fonction f admet une dérivée partielle d'ordre k pour le multi-indice (i_1, \ldots, i_k) ;
- **2.** la fonction $\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}}$ est continue sur Ω .

Remarque 80. — Soient Ω un ouvert de \mathbb{R}^n , F un \mathbb{R} -espace vectoriel de dimension finie et $f: \Omega \longrightarrow F$ une application. L'application est de classe \mathcal{C}^2 au sens de la définition 79 si et seulement si

- 1. la fonction f est différentiable sur Ω ;
- 2. la fonction $df: \Omega \longrightarrow \mathcal{L}(\mathbf{R}^n, F)$ est de classe \mathcal{C}^1 sur Ω .

9.3. Théorème de Schwarz

Théorème 81. — Soient Ω un ouvert de \mathbb{R}^n , F un \mathbb{R} -espace vectoriel de dimension finie, $k \geq 2$ un entier et :

$$f \mid \Omega \longrightarrow F$$
 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

une application de classe C^k . Alors pour tout $(i_1,\ldots,i_k)\in [1,n]^k$ et pour toute permutation $\sigma\in\mathfrak{S}_k$

$$\frac{\partial^k f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_k}} = \frac{\partial^k f}{\partial x_{i_{\sigma(1)}} \partial x_{i_{\sigma(2)}} \dots \partial x_{i_{\sigma(k)}}}$$

La continuité des dérivées partielles d'ordre k est essentielle dans le théorème de Schwarz. Si f est l'application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^3y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

alors les dérivées partielles $\frac{\partial^2 f}{\partial y \, \partial x}(0,0)$ et $\frac{\partial^2 f}{\partial x \, \partial y}(0,0)$ existent mais $\frac{\partial^2 f}{\partial y \, \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \, \partial y}(0,0)$

9.4. Caractère \mathcal{C}^k via les applications composantes

Proposition 82. — Soient Ω un ouvert de \mathbb{R}^n ,

$$f \mid \Omega \longrightarrow \mathbf{R}^p$$
 $(x_1, \dots, x_n) \longmapsto (f_1(x_1, \dots, x_n), \dots, f_p(x_1, \dots, x_n))$

une application et $k \geqslant 1$ un entier. Alors, l'application f est de classe C^k sur Ω si et seulement si ses applications composantes f_1, \ldots, f_p sont de classe C^k sur Ω .

9.5. Opérations sur les fonctions de classe \mathcal{C}^k

Proposition 83. — Soient Ω un ouvert de \mathbf{R}^n , F un \mathbf{R} -espace vectoriel de dimension finie, des applications $f: \Omega \longrightarrow F, g: \Omega \longrightarrow F, (\lambda, \mu) \in \mathbf{R}^2$ et un entier $k \geq 2$. Si les applications f et g sont de classe C^k sur Ω alors l'application

$$\lambda \cdot f + \mu \cdot g \mid \begin{array}{ccc} \Omega & \longrightarrow & F \\ x & \longmapsto & \lambda \cdot f(x) + \mu \cdot g(x) \end{array}$$

est de classe C^k sur Ω .

Proposition 84. — Soient Ω un ouvert de \mathbb{R}^n , des applications $f \colon \Omega \longrightarrow \mathbb{R}$, $g \colon \Omega \longrightarrow \mathbb{R}$ et un entier $k \geqslant 1$. Si les applications f et g sont de classe C^k sur Ω alors l'application :

$$f \times g \mid \begin{array}{ccc} \Omega & \longrightarrow & \mathbf{R} \\ x & \longmapsto & f(x) \times g(x) \end{array}$$

est de classe C^k sur Ω .

Proposition 85. — Soient Ω_n un ouvert de \mathbf{R}^n , Ω_p un ouvert de \mathbf{R}^p , F un \mathbf{R} -espace vectoriel de dimension finie, une application $f: \Omega_n \longrightarrow \mathbf{R}^p$ tele que

$$\forall x \in \Omega_n \quad f(x) \in \Omega_p$$

 $g \colon \Omega_p \longrightarrow F$ et un entier $k \geqslant 1$. Si l'application f est de classe C^k sur Ω_n et l'application f est de classe C^k sur Ω_p , alors la composée

$$g \circ f \mid \begin{array}{ccc} \Omega_n & \longrightarrow & F \\ x & \longmapsto & g(f(x)) \end{array}$$

est de classe C^k sur Ω_n .

Exercice 86. — Soit une application

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \atop (x,y) \longmapsto f(x,y)$$

de classe C^2 sur \mathbf{R}^2 . Démontrer que l'application

$$g \mid \mathbf{R}_{+}^{*} \times \mathbf{R} \longrightarrow \mathbf{R} \\ (r, \theta) \longmapsto f(r\cos(\theta), r\sin(\theta))$$

est de classe C^2 sur $\mathbf{R}_+^* \times \mathbf{R}$ et exprimer les dérivées partielles premières de secondes de g, en fonction des dérivées partielles premières de secondes de f.

9.6. Étude d'une équation aux dérivées partielles du second ordre (équation des cordes vibrantes)

Exercice 87. —

1. Soit une fonction

$$g \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (u,v) \longmapsto g(u,v)$$

de classe C^2 sur \mathbf{R}^2 telle que

$$\forall (u, v) \in \mathbf{R}^2, \quad \frac{\partial^2 g}{\partial v \, \partial u}(u, v) = 0$$

Démontrer qu'il existe $\varphi \in \mathcal{C}^2(\mathbf{R}, \mathbf{R})$ et $\psi \in \mathcal{C}^2(\mathbf{R}, \mathbf{R})$ telles que

$$\forall (u, v) \in \mathbf{R}^2 \quad g(u, v) = \varphi(u) + \psi(v)$$

2. Soit $c \in \mathbf{R}^*$. Soit une fonction

$$f \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \atop (x,t) \longmapsto f(x,t)$$

de classe C^2 sur \mathbf{R}^2 telle que

$$\forall (x,t) \in \mathbf{R}^2$$
 $c^2 \frac{\partial^2 f}{\partial x^2}(x,t) = \frac{\partial^2 f}{\partial t^2}(x,t)$

(a) Soient $\alpha, \beta, \gamma, \delta \in \mathbf{R}$ fixés. On considère la fonction g définie par

$$g \mid \mathbf{R}^2 \longrightarrow \mathbf{R} \\ (u,v) \longmapsto f(\alpha u + \beta v, \gamma u + \delta v)$$

Démontrer que la fonction g est de classe C^2 sur \mathbf{R}^2 et exprimer, pour tout $(u, v) \in \mathbf{R}^2$, $\frac{\partial^2 g}{\partial v \partial u}(u, v)$ en fonction de $\alpha, \beta, \gamma, \delta$ et des dérivées partielles d'ordre 2 de f.

(b) En choisissant $(\alpha, \beta, \gamma, \delta) \in \mathbf{R}^4$ tels que

i. la matrice $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ est inversible;

ii. pour tout $(u, v) \in \mathbf{R}^2$, $\frac{\partial^2 g}{\partial v \partial u}(u, v) = 0$;

démontrer qu'il existe $\varphi \in \mathcal{C}^2(\mathbf{R}, \mathbf{R})$ et $\psi \in \mathcal{C}^2(\mathbf{R}, \mathbf{R})$ telles que

$$\forall (x,t) \in \mathbf{R}^2, \quad f(x,t) = \varphi(x+ct) + \psi(x-ct)$$